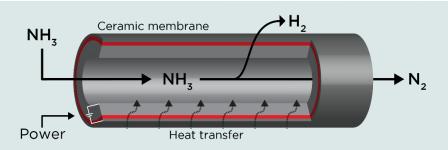


SINGLE Electrified Single Stage Ammonia Cracking to Compressed Hydrogen

Selene Hernández Morejudo, Research manager CoorsTek Membrane Sciences, Gaustadalleen 21, 0349 Oslo, Norway

SINGLE - 101112144

- Partners: CTMS, CSIC (ITQ), GECRIO, UL, SINTEF, ICONS, UPC
- Project start date: May 2023
- Duration: 3 years



Ammonia as Hydrogen carrier

- Carbon-free liquid: high energy and hydrogen density
- Well-established infrastructure:
 - Ammonia has been produced industrially for over 75 years, with large existing infrastructure and offtake, despite its toxicity and HSE concerns
- Favorable storage and transport properties:
 - At atmospheric pressure, hydrogen exists as a liquid at -253
 °C, which makes it very challenging to transport as liquid
 - Ammonia exists at -33 °C: ability to be liquefied and maintained in liquid form for extended periods at ambient pressure
- Ammonia fuel bunkering network being developed (example Green platform project Norway)

Proton Ceramic Electrochemical Reactor (PCER)

PCER for ammonia dehydrogenation: 1-step process to pressurized H₂ with superior energy efficiency

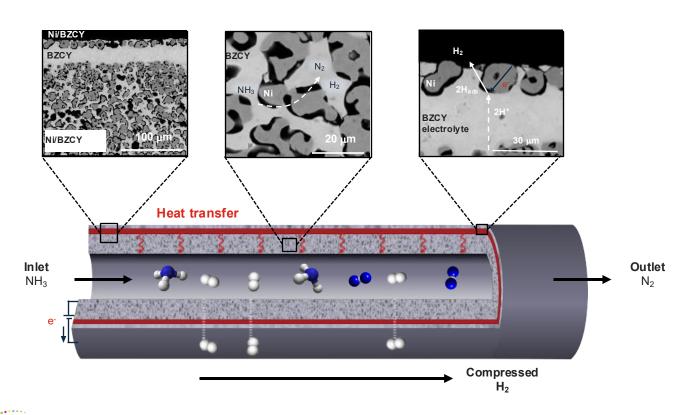
- Ammonia dehydrogenation (ADH) reaction
- Hydrogen separation
- Heat management
- Compression

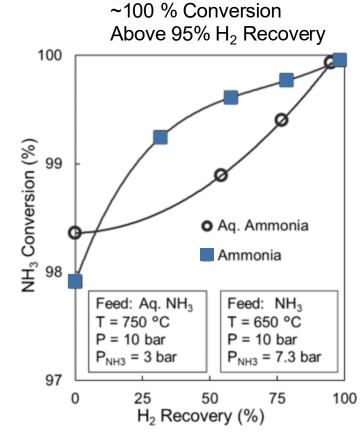
SINGLE

Electrified Single Stage Ammonia Cracking to Compressed Hydrogen

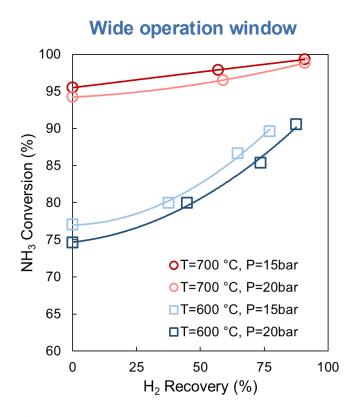
Main objectives

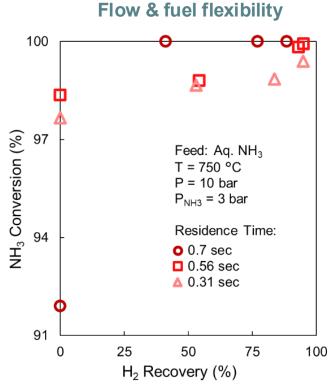
- Proton Ceramic Electrochemical Reactors (PCERs) for Ammonia Dehydrogenation (ADH)
- High purity pressurized hydrogen
- Demonstration module of 10 kg H₂/day
- Evaluation the value stream for scale up economics for future large-scale deployment

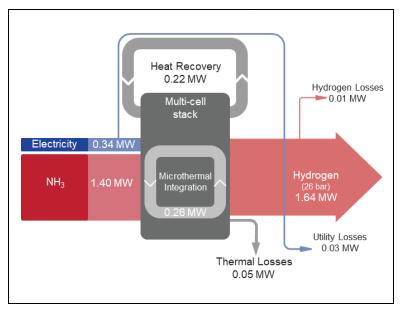




PCER for H₂ production from Ammonia







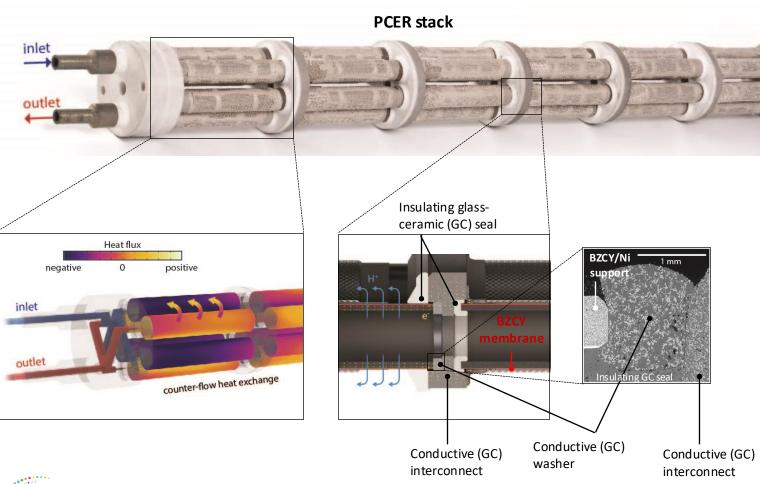
PCER performance and efficiency

High efficiency

NH3-PCER 1tn/day plant 94.5 % efficiency

From cell to stacks

Series of six barrels (six single cells per barrel)



- Cells (six) within a barrel electrically in parallel
- 6 barrels electrically in series
- Highly conductive Ni-based IC:
 - o Efficient current distribution
 - Mechanical robustness
- Designed for high pressurize operation.
- U-bend type gas flow covering 12 cells
- Microthermal heat integration

From stacks to module

Stack 0.5 kg H₂/day Panel 2.5 kg H₂/day Module 10 kg H₂/day

BoP arrived Valencia (Spain)

Targets 10 kg of H₂ per day module:

- Efficiency > 90 % HHV
- NH₃ conversion > 99.5 %
- Hydrogen recovery > 95 %
- > 500 h continuous operation
- Hydrogen purity according to ISO 14687:2019*

Project outcomes

From single cell to stack

First PCER stack proven, achieving NH_3 conversion 99 % and H_2 recovery > 98 % at 750 °C and 10 bar, and 100 hours of stable continuous operation

Pilot-scale manufacturing

PCER stacks are being produced advancing toward TRL 5 and industrial integration.

Catalyst optimization

Ni-BZCY electrodes were enhanced by metal infiltration, for low-temperature activity (< 600 °C) and durability

Alloy nitridation resistance

Ni-based Alloy 625 identified as the most corrosion-resistant material, validated under 750 °C, 20 bar wet NH₃ conditions

Advanced modelling and control

CFD and real-time control algorithms developed to enable maximum hydrogen output even with fluctuating renewable power inputs.

Sustainability validation

LCA and RED III methodologies confirmed that PCER-based meets the RED III threshold for renewable hydrogen (Spain, 70 % PV electricity, only 14 % of the RED III carbon footprint limit is emitted in the cracking process)

Grid-compatible flexibility

The modular PCER architecture supports distributed hydrogen generation close to demand centers

H₂

To explore the project's key insights in more depth, a set of infopacks is available on SINGLE Zenodo community.

Scan here to access all the infopacks available:

Coming soon

100 kg H₂/day demo unit

New project from TRL 5 to TRL 7 8m€ - 2026 to 2029

Thank you

Selene Hernández Morejudo, Research manager CoorsTek Membrane Sciences

Follow the project: https://singleh2.eu Contact smorejudo@coorstek.com

SINGLE – Partners

- 1. COORSTEK MEMBRANE SCIENCES AS (CTMS) (Norway
- 2. CSIC (Spain) Instituto de Tecnología Química
- **3. GEA ENERGIA CRIO S.L.** (GECRIO) (Spain) is a company specialized in cryogenic installations and LNG and CNG supply stations for vehicles
- **4. UNIVERISTY OF LUBLIJANA** (UL) (Slovenia) leading team in Slovenia for life cycle assessment methodology, hydrogen economy, hydrogen experimental research, and theoretical and applied thermodynamic analyses of energy conversion systems.
- **5. SINTEF** (Norway) Sustainable Energy Technology, with the subgroup Thin Film and Membranes Technologies.
- **6. ICONS** (Italy) science communication, social and business innovation.

