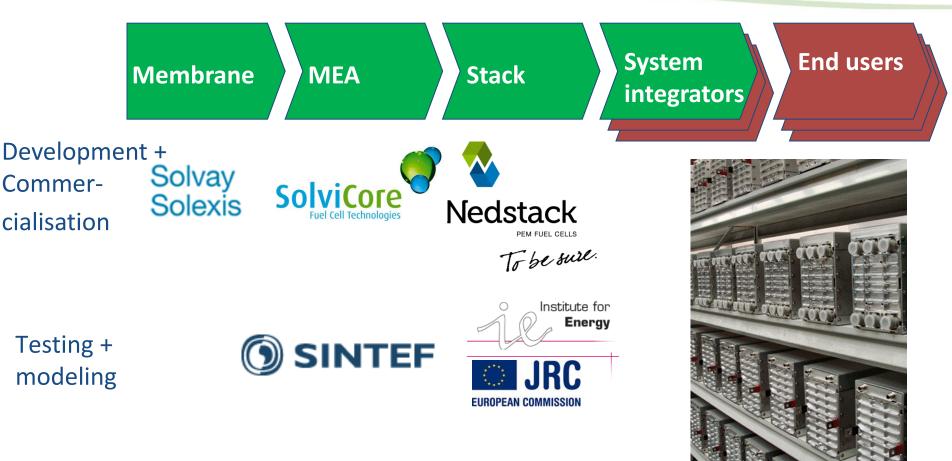
STAYERS

Stationary PEM fuel cells with lifetimes beyond five years

FCH-JU 256721

Programme Review Day 2011 Brussels, 22 November


Martijn Mulder Nedstack fuel cell technology B.V.

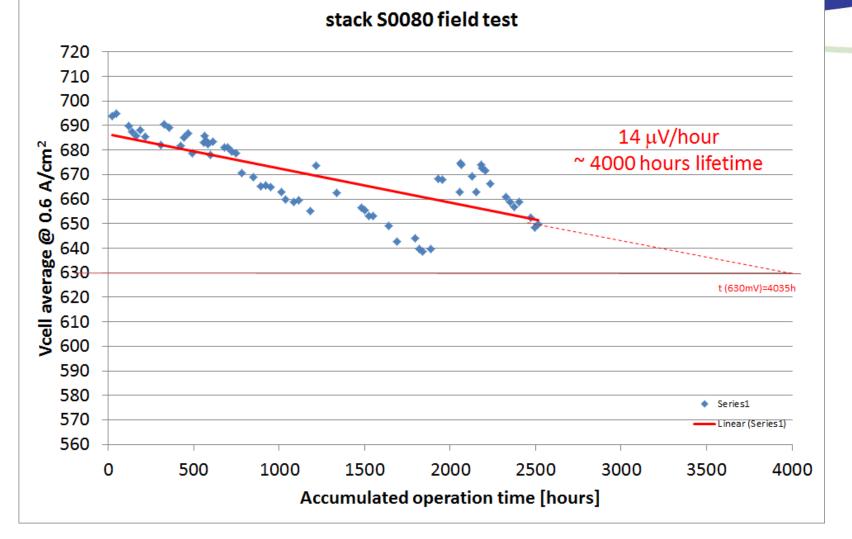
1. Project achievements: STAYERS project parameters

Themes:

SP1-JTI-FCH.2009.3.2:	Materials development for cells, stacks and balance of plant
SP1-JTI-FCH.2009.3.1:	Fundamentals of fuel cell degradation for stationary power applications
Duration:	36 months; 1 January 2011 - 31 December 2013
<u>Budget</u> :	4.1 M€
FCH-JU funding:	1.9 M€

1. Project achievements STAYERS consortium

1. Project achievements: STAYERS background


Background / motivation:

- In 2008: 200 kTon of vented H₂ per year (~400 MW, 50% conv. Eff.) from chlorine production
- 150 kTon H_2 per year available (~300MW) at bleach factory near sawmills
- Chlorine transport restrictions → more local chlorine plants → 1 MW
 PemPowerPlants; <u>1 system being commissioned (sept. 2011)</u>
- Stack life is major cost driver in total cost of ownership
- PemPowerPlant Delfzijl
 (50-70 kW) @ average load of 0.55 A/cm²
 a) system demonstrator
 b) field test site for PEMFC prototypes
 c) (Un)planned stops of chlorine plant
 result in quasi continuous operation

1. Project achievements: STAYERS background

STARTING POINT STAYERS PROJECT

1. Project achievements: STAYERS goals and targets

<u>Goal</u>:

> 40.000 hours stationary operation lifetime of PEM fuel cell

<u>Motivation</u>: lower replacement frequency PEMFC stacks over economic lifetime Power Plant \rightarrow lower cost of ownership PEMFC Power Plant

Objectives:

- translate lifetime target into degradation rate at defined operating conditions
- Understand degradation mechanisms in current generation PEMFC
- Evaluate performance parameters of membrane, electrode, GDL, MEA, flow field, stack assembly and operating conditions
- Cross link component development to reach system optimum
- Enhance understanding and predict improvements by modeling
- Relate duration testing in the field, in the laboratory and at accelerated stress conditions
- Extrapolate duration test data and determine projected lifetime

1. Project achievements: STAYERS milestones

Membrane (WP2)

Demo (AST) improved durability membrane:	M15
Demo (AST) 40,000 hours membrane:	M25
Pilot production reinforced membrane:	M29

<u>MEA</u> (WP3)

Aging mechanism report base line MEA generation 1:M12Aging mechanism report improved MEA generations 2, 3, 4:M18, 23, 33

Stack / BoP (WP4)

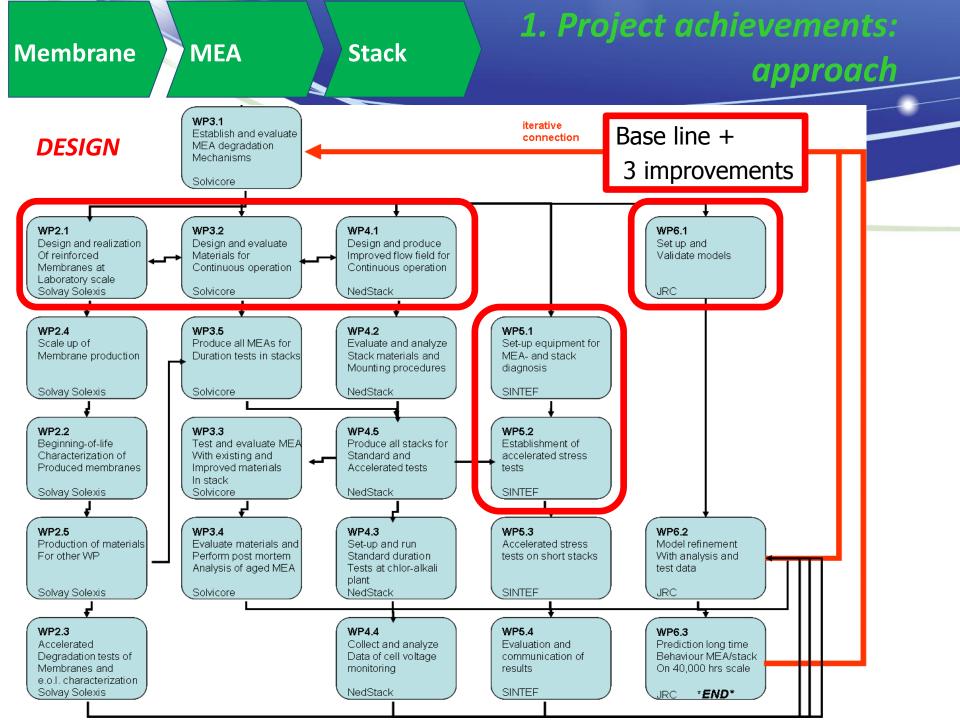
New flow field demonstrated	M28
Assessment 1,2 of improved stack	M19, 34

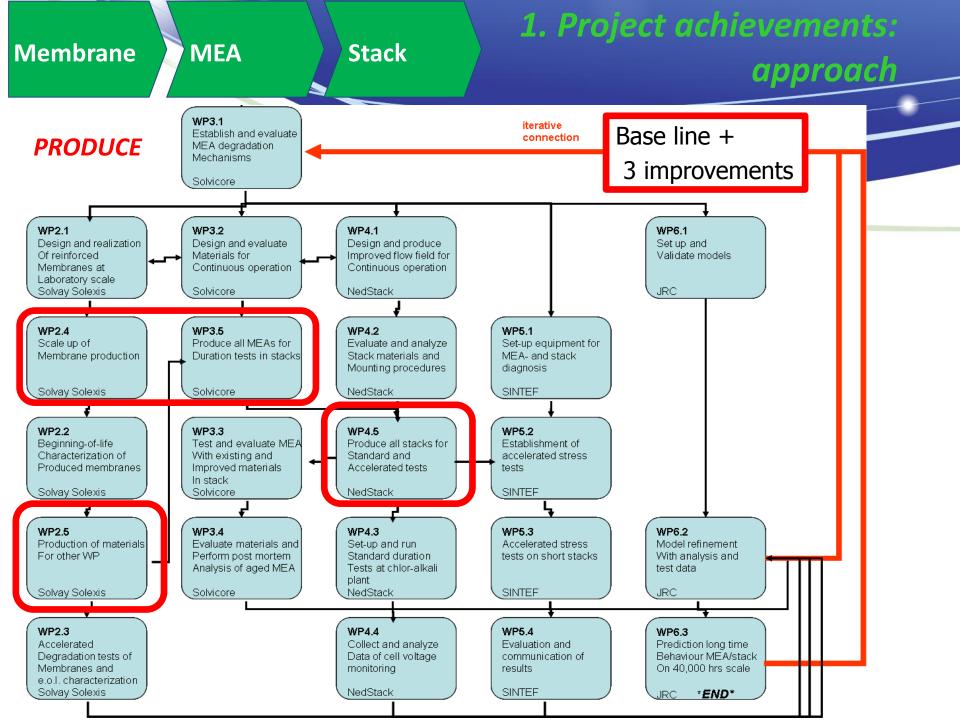
1. Project achievements: STAYERS milestones

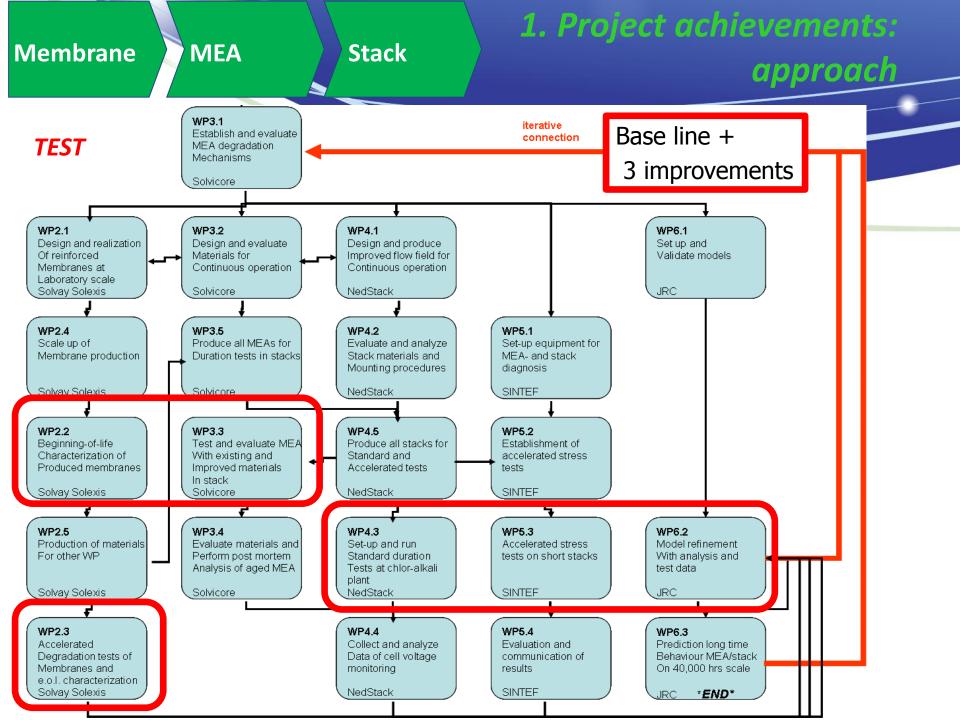
Accelerated durability investigations (WP5)

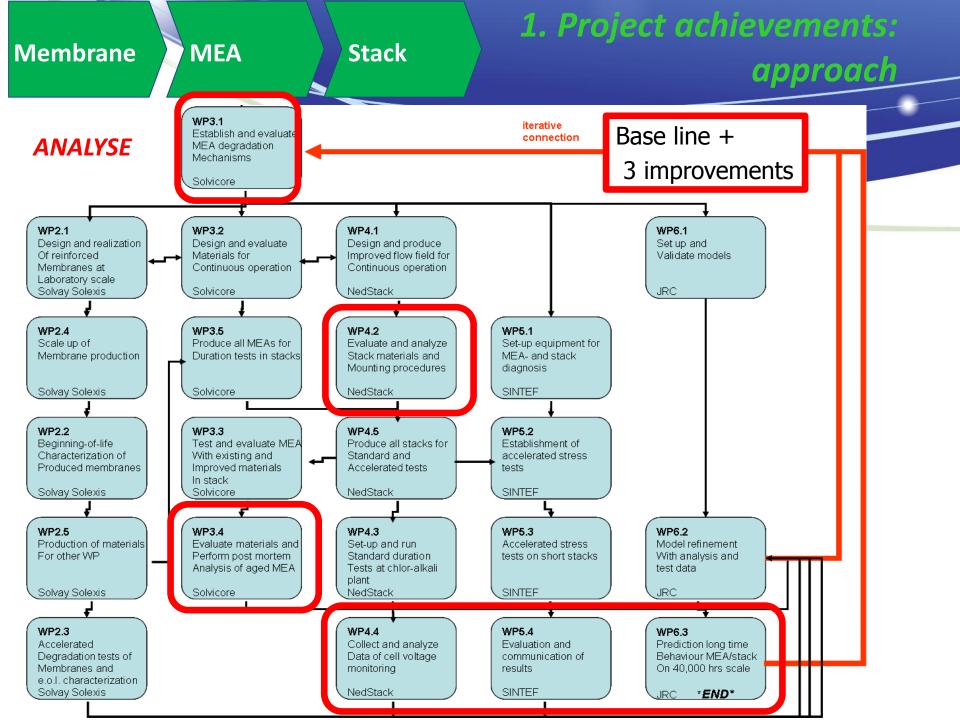
Translation of accelerated tests to duration test data	M23
Assessment of degradation data from all types of tests	M36

MEA modelling and data analysis (WP6)


Validated integrated model	M12
Model projected lifetime of 40,000 hours	M34


1. Project achievements:


approach


Produce, test and analyse 1 reference type and 3 improved prototypes during the project

Work		
package	Activity	Partner
WP1	Coordination of the project	Nedstack
WP2	Membrane development	Solvay Solexis
WP3	MEA development	Solvicore
WP4	Stack- and Balance-of-Plant development	Nedstack
WP5	Accelerated durability investigations	SINTEF
WP6	MEA modeling and data analysis	JRC-IE

1. Project achievements: Expected progress to state of art

- Reinforced membrane
- Chemically stabilised membrane
- Improved catalyst layer
- Improved GDE (GDL+catalyst layer)
- More stable MEA rim / gas seal
- Improved flow field(s, if appropriate)
- Optimized set operating conditions (RH, T, λ)
- Dedicated AST's for single stressor evaluation
- Model quantifying degradation (μV/hr) based on physical parameters that characterise degradation phenomena

(Solvay Solexis) (Solvay Solexis)

(Solvicore) (Solvicore) (Solvicore/Nedstack)

> (Nedstack) (Nedstack)

(SINTEF)

(JRC)

1. Project achievements: Results first 6 months

- Systematic lower decay rate in laboratory duration test than in field test: → searching the cause
- Reinforced membrane produced for base line MEA: 370 parts
- Delayed base line testing due to problems of membrane integration in the MEA:
 → solution found + base line data generation in progress:

MEA production scalability is strong criterium for MEA prototype selection

- Preliminary field test results of base line improvement generated
- New test rig installed for field testing of 12 stacks simultaneously
- Standard analysis BOL/EOL protocol for conditioning/testing (iV/EIS/CV/H₂ cross over)
- Base line seal material degradation test methods screening completed
- AST protocol inventory completed: selection/design to reproduce field test stress factors in progress
- Data analysis method development in progress: how to deal with reversible decay/recovery and irreversible decay for decay rate determination?
- Model setup completed: physical parameter collection in progress

Stationary Power Generation & Combined Heat & Power

"Long-term and breakthrough orientated research will concentrate on degradation and lifetime fundamentals related to materials and typical operation environments for all power ranges. The aim will be to deliver new or improved materials as well as reliable control and diagnostics tools both at a component and at system level."

2. Alignment to MAIP

"Research and technological development will be directed towards developing components and sub-systems (including BoP) as well as novel architectures for cell and stacks leading to step change improvements over existing technology in terms of performance, endurance, robustness, durability and cost for all three technologies." (PEMFC, MFC, SOFC)

2. Alignment to MAIP

STAYERS in the Multi Annual Implementation Plan Structure

Market Support (SME Promotion, Demand Side Measures, etc.)

Demonstrations			
Vehicles & Infrastructure	Low Carbon Supply Chain	System Readiness Manufacturability	Backup/UPS Off-road H2 Vehicles Micro/Portable FC
Technology, Sustainability & Socio-economic Assessment Framework, RCS and PNR			
Res	arch and Techno	ological Develop	ment
Stack & Subsystems	Processes & Modules	Periphery & Components	Systems & Integration & Testing
Components	New Technologies	Material & Design & D	egradation & Durability
Long-term and Breakthrough Orientated Research			
Transport & Refuelling Infrastructure	Hydrogen Production & Distribution	Stationary Power Generation & CHP	Early Markets

2. Alignment to AIP2009:

theme 3.2

Materials development for cells, stacks and balance of plant

Theme 3.2 project objectives	STAYERS objectives match?
Development and design of materials to improve performance	
of both cells and stack and BoP components. Mechanical,	Yes, improved electrode and rim
thermal and electro-chemical stability should be considered and	MEA, improved separator plate
lifetime and degradation issues relevant to production cost for	flowfield and operating
single cells and stacks.	conditions
Investigation on failure mechanisms (such as Chromium	Yes, reinforced, thin, low
poisoning, redox resistance in SOFCs, fuel tolerance, robust low	resistance membrane, AST
resistance membranes in PEMFCs, and durable metals for	investigation dominant failure
interconnects of MCFCs).	mechanisms
New and improved material production techniques to reduce	Yes, Scale up membrane
cost, emissions and improve yields, quality and performance in	production process, MEA
industry relevant cells, or BoP materials in FC-units.	prototypes designed for large
	volume production
Development of inspection techniques that can be used in	Yes, membrane/MEA suppliers
manufacturing of materials and cells to identify known defects	developed procedures to
or anomalies related to materials.	evaluate BOL/EOL + quality
	control

2. Alignment to AIP2009:

theme 3.1

Fundamentals of fuel cell degradation for stationary power applications

Theme 3.1 project focus on	STAYERS objectives match?
Developing full understanding of failure mechanisms,	Yes, post mortem analysis MEAs,
degradation and deterioration phenomena and how these	separator plates, membranes;
relate to stationary operating conditions, materials and	combined lab, AST and field
processing.	testing
Steady state operation, abnormal operational states, thermal	
and/or current cycling, vibration and shock proofing, sensitivity	Yes, field testing at 70 kW power
to typical gas impurities, loss of water supply, power cycles, etc.	plant
Material research to relate basic materials/performance	
understanding relevant to current industrial cell/stack	Yes, each prototype is a large
component, proof of concept.	volume produced MEA / stack
Accelerated testing techniques, statistical analysis and building	Yes, multiple cell/stack
up a sensitivity matrix to allow predictive lifetime estimates.	degradation statistics in field test,
	dedicated ASTs, modeling aided
	sensitivity matrix build up
Durability/failure mechanisms common to other applications	Yes, failure mode analysis back up
and interface with other relevant actions in the field.	power customer returned fuel
	cells

3. Cross-cutting issues

- •STAYERS contributions to :
 - Training and Education
 - •Not main goal of project
 - Safety, Regulations, Codes and Standards
 - •Not main goal of project
 - •AST protocol design complementary to exisiting standards
 - •Field test stop/start/operate protocols respect safety regulations on chemical industry site
 - Dissemination & public awareness
 - Project achievements will be disseminated by science papers, international workshops, press releases, and via the (to be launched) internet site
 - •2nd International Workshop on Degradation Issues on Fuel Cells, Thessaloniki, sept. 2011

4. Enhancing cooperation and future perspectives: too early for STAYERS

- Too early for STAYERS to address below items:
- Technology Transfer / Collaborations
 - the degree to which the project interacts, interfaces, or coordinates with other institutions and projects (especially regional/national/international projects and/or organizations)
 - Cooperation with other FCH JU projects on PEMFC degradation (e.g. KEEPEMALIVE)
 - 2nd International Workshop on Degradation Issues on Fuel Cells, Thessaloniki, sept. 2011
- Project Future Perspectives
 - *Proposed future research approach and relevance*
 - the degree to which the project has effectively planned its future, considered contingencies, built in optional paths or off ramps, etc
 - Need/opportunities for increasing cooperation at EU, Member States or Regional level, and/or for building alliances between industry, government, research centers, SMEs, etc.
 - Need/opportunities for international collaboration
 - Possible contribution to the future FCH JU Programme

THANK YOU FOR YOUR ATTENTION