

AUTORE Automotive deRivative Energy system

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Greg Kelsall

GE (Alstom Power UK)

www.autore-eu.com

greg.kelsall@ge.com

W5H52991

PROJECT OVERVIEW

- **Call year:** 2014
- heat and power generation
- **Project dates:** 01/08/2015 30/04/2019
- % stage of implementation 01/11/2018: 87%
- **Total project budget:** 4,464,447€
- **FCH JU max. contribution:** 3,496,947€
- **Other financial contribution:** 796,850€
- University of Split, Tuscia University, SINTEF

Call topic: FCH-02.5-2014 – Innovative fuel cell systems at intermediate power range for distributed combined

Partners: Alstom Power Ltd (100% GE-owned), General Electric (Switzerland), Daimler AG, NuCellSyS, Helbio,

PROJECT SUMMARY

AutoRE, Automotive deRivative Energy system

Objectives

50 kWe prototype (baseline demo)

Reduced-scale innovative components (lab demonstration)

Global positioning vs international state-of the art

- Apparently no commercial systems in the 50-100kWe size range
- Application and market area
 - combined heat and power (CHP) in commercial/industrial buildings at 50-100kWe size

e-of the art he 50-100kWe size range

PARTNER ROLES

50 kWe baseline demo in Rugby

Innovative, Lab-scale and desktop activities

- Pd-based membranes for H₂ purification: SINTEF (lead)
- Fuel cell stack operated on reformate: NucellSys+Helbio (lead)

UNIVERSITÀ Tuscia

SINTEF

• Modelling, diagnostic and RAMS: Univ. Split-FESB, Univ. Tuscia, GE FES

PROTOTYPE TEST FACILITY – layout

PROTOTYPE TEST FACILITY – in 'real-life'

Natural gas reformer-

Natural gas storage tanks

-Fuel-cell container

H2/tailgas tanks

-Gas analysers and chromatograph

er

PROJECT PROGRESS/ACTIONS – Efficiency

Achievement to-date

Electrical Efficiency of 38-40% LHV

Aspect	Parameter (KPI)	Unit	SoA	FCH	
addressed			2016	Call topic	
Efficiency	Electrical efficiency	%LHV	35%-43%	46%	
	Total efficiency	%LHV	80%	82%	

Efficiency as a function of loading

PROJECT PROGRESS/ACTIONS – Stack life-time

- Durability of automotive stack in stationary applications is unknown • Experience with bus driving cycles allows for expecting >30,000 hours

Future steps:

	SoA	FCH JU Targets			
Ľ	2016	Call topic	2017	2020	
ſS	20,000	>30,000	NA	NA	

Utilize proprietary degradation models to estimate life-time in stationary

Risks and Challenges

Main bottleneck has been design/delivery of NG reformer (Task 3.1./3.3)

- Helbio initial build 6 months delayed to end of June 2017 (M23) due to upscaling task more complex than originally foreseen and sourcing of 347H steel longer than expected
- Commissioning at Helbio site revealed high reactor dP due to material choice for reformer tubes delaying delivery to Prototype test site until May 2018 (M34)
- 9 month contract extension to complete 3000h endurance test
- 3000h test started 1/10/18 but further issues with a fuel processor peripheral delayed restart to w/c 12/11/18

Additional issues due to GE acquisition of Alstom Power

- Reassignment/cancellation of project tasks eg RAMS and compact heat exchanger
- Modification of exploitation plan

Fe corrosion products blocking reactor tubes

Communications Activities

Project communication via :

Workshops/Conferences and Papers

- >25 project related publications to date (see Project website for details/links)
- AutoRE project workshop scheduled towards end of project when prototype results available

Project specific website

https://www.autore-eu.com/

Local press release initiatives

- "Helbio announce delivery of H2 system for AutoRe project" http://www.helbio.com/assets/Uploads/Press%20Release Helbio%20AutoRE%20 Apr il%202018v.pdf
- "University of Tuscia at forefront of future of energy in Europe" https://www.ontuscia.it/societa/universita-della-tuscia-272106 https://etruriaoggi.it/universita-della-tuscia-in-prima-linea-nel-futuro-dellenergia-in-

Project Structure News & Events Contact Us

Bringing automotive and power generation industries together

Power generation and automotive industry share the same objective when it comes to fuel cells: bringing to the market an efficient, sustainable and affordable system. As production volume is well known to be a fundamental driver in reducing costs, joining the forces of two non-competing industries is a win-win situation for fuel cells.

About the Project

News & Events

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

Exploitation to follow the strategy defined in Exploitation Plan

- **Focus on business partners Helbio and NuCellSys/Daimler to exploit components of the** system (stack and natural gas reformer)
- **SINTEF** has signed a license agreement with Hydrogen Mem-Tech AS in Norway for further upscaling and commercialisation of Pd-based membranes

SSERR: Support Service for the Exploitation of Research Results weblink sent to AutoRE partners

Expected Impacts Technical impacts

- **Electrical efficiency: 47%**
- Thermal efficiency: >43% (90% electrical plus thermal efficiency)
- Stack life-time: >30,000 hours
- System CAPEX: <3,000 €/kW, allowing grid parity
- Scheduled/preventive maintenance to reach >98% availability, and no unforeseen shut-down for at least 2 years

Business opportunities and job creation Improving innovation capacity

Regulations, codes and standards (RCS), and related best practice procedures

 Public domain deliverable on permitting 'lessons learned' **Benefits for the environment and European** security of supply

AUTORE Automotive deRivative Energy system

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Greg Kelsall

GE (Alstom Power UK)

www.autore-eu.com

greg.kelsall@ge.com

W5H52991

