Low temperature hydrogen production from 2nd generation biomass

HyTIME 278855

Pieternel Claassen
Food & Biobased Research
www.hy-time.eu

PROJECT OVERVIEW

- SP1-JTI-FCH.2010.2.4 Hydrogen production Jan 2012-July 2015
- Total budget M€ 2.92; FCH-JU grant M€ 1.32
- The target of HyTIME is the production of 1-10 kg H₂/day by fermentation of biomass.

The process is derived from Anaerobic Digestion but is **novel in** the <u>decoupling of hydrogen production from methane</u> <u>production</u> in dedicated bioreactors. Hydrogen is harvested and biogas from the effluent of the H₂ reactor is used to cover the energy demand.

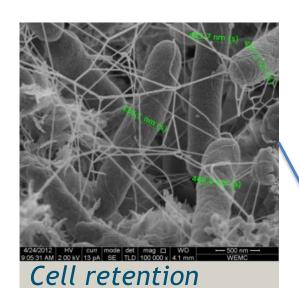
WIEDEMANN-Polska Projekt

PROJECT TARGETS AND ACHIEVEMENTS

Programme objective/ target	Project objective/ target	Project achievements to-date	Final achieve ment						
AIP									
Efficient biological systems for digestion of 2 nd generation biomass	Supply of biomass. Mobilisation of fermentable components	Optimized protocols for straw and grass (steam ex, chemical, enzymatic). Energy demand, reduction of enzymes	100%						
Low temperature H ₂ production process	Efficient H ₂ fermentation in dedicated reactors	Grass: 90% yield at 5.7 L. Larger scale: 25-30% yield at 58-225 L scale	35%						
Development of bioH ₂ production systems	Optimisation of gas upgrading, AD, process monitoring and system integration	MC successful, AD potential sufficient, new devices for online control, mass and energy balances, technoeconomics overall process	Circa 75%						

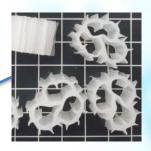
Validation of pretreatment

Wheat straw

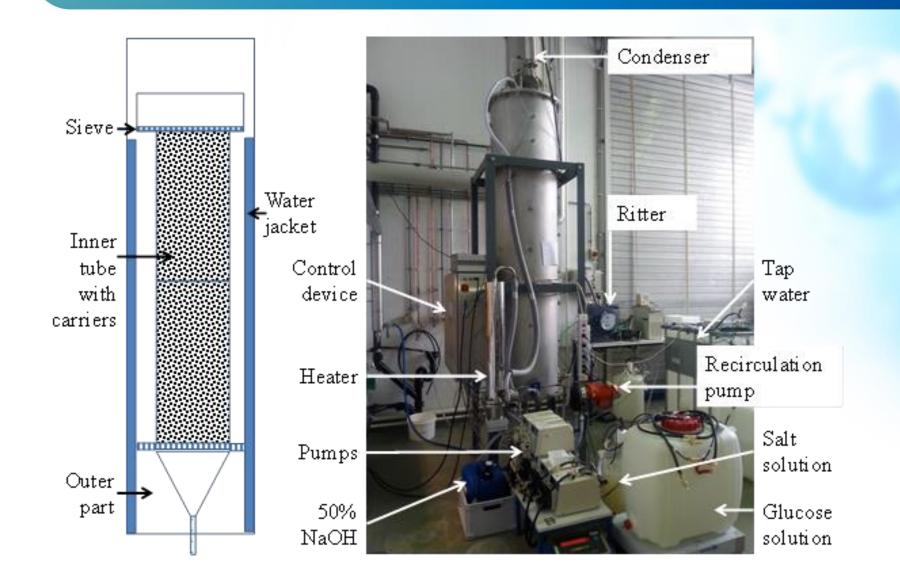

- 1. Steam explosion or acid impregnation
- 2. Enzymatic hydrolysis
- 3. Hydrogen fermentation in 35 L CSTR:
- 4. Anaerobic digestion in 250 L CSTR:

Hydrolysate/ inoculum	Т	HRT(h)	% H ₂	H ₂ in g/day
	reactor			
C+E/Anaerobic sludge	37	178	9.6	0.8
S+E/C. saccharolyticus	70	37	44.3	3.0
C+E/C. saccharolyticus	70	37	47.1	2.0

Dedicated bioreactors and upscaling

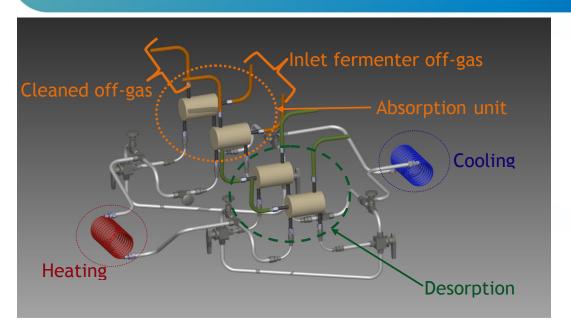


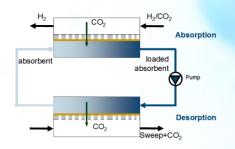
Verge grass

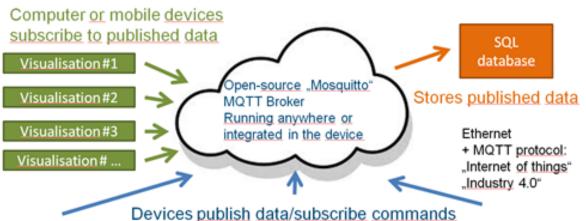


Packed bed reactor (5.7 L)

1 m³ grass hydrolysate: 4.7 m³ H₂ 6.8 m³ CH₄ at 6 g H₂/day

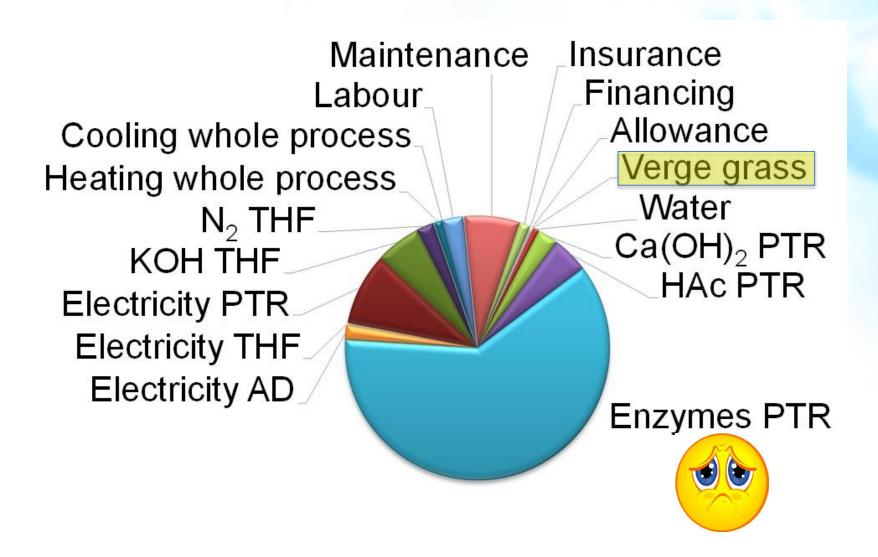

Final scale: 225 L


Results of upscaling in dedicated reactors


Feedstock	Volume L	Type reactor	T reactor	HRT (h)	Yield %	% H ₂	H ₂ in g/day
Straw(C)	35	CSTR	70	37	n.d.	47	2
Grass(C)	5.7	PB/GD	70	10	90	19	6
Sucrose	58	PB/GD	70	20	87	18	23
Molasses	58	PB/GD	70	10	20	12	18
Glucose	225	PB/GD	77	10	25	8	109

Biohydrogen production system

Membrane modules for CO₂ removal



Visualisation software for remote process control

Gasanalysis device WP4 Control system of Thermoreactor WP3

Control system of biogas plant

Techno-economic analysis

Objective: 1-10 kg H₂/day

- Achieved: 109 g H₂/day
 - Yield only 25% instead of 90% (contamination)
 - Reactor size 225 L instead of 500 L (defaulting partner)
 - Low organic loading (lack of time)

- Main contingency plans:
 - Exploration "new" bacteria
 - Carbohydrate vs lignocellulose -derived biomass

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- Co-funding by Dutch ministry of Economic Affairs: Topsector AgriFood
- FCH JU interactions: UNIfHY (HyGEAR), FITUP (ENVIPARK), HYPROFESSIONALS (ENVIPARK), ENE.FIELD (ENVIPARK), FLUMABACK (ENVIPARK), Knowhy (ENVIPARK)
- EU interactions: SAHYOG (*DLO-FBR*), Ambigas (*RWTH*), TMFB (*RWTH*)
- International-level projects: SEBE (ENVIPARK), BioH2 regional (ENVIPARK), HySTREM (ENVIPARK), H2MemClean (TUW), Biomethair (ENVIPARK), Thai-German Seed Fund (RWTH)
- HyTIME is a direct continuation of FP 5 BIOHYDROGEN (Proof of principle) and FP 6 HYVOLUTION (increase of H₂ yield);
 Coordinated by DLO-FBR

HORIZONTAL ACTIVITIES

Training activities

- 2 practical training of students, 1 workshop, 3 training courses on production of BioH₂ and AD (ENVIPARK)
- 1 PhD, 2 Masters, 1 Bachelor student (TUW)
- 1-4 Masters, 2 Bachelors, 1 Diplom student and 15 undergraduates (RWTH)
- 1 PhD student, external training (DLO-FBR)

DISSEMINATION ACTIVITIES (2014-2015)

Conferences with presentations:

- PRES, Prague 2014
- DECHEMA, Aachen 2014
- Fuels of the Future, Berlin 2014
- Beyond Biogas, Wageningen 2014
- EBCE, Vienna 2015
- PRES, Kuching 2015
- Bioethanol & Bioconversion Technology, Detmold
 2015
- Hypothesis XI, Toledo 2015

EXPLOITATION PLAN/EXPECTED IMPACT

Change it

Ferme produ

Exploitat

A hydr condu

- Comm
- Remot
- Main RTD
 - Prolon balance
 - Integr
 - Evalua
- Current F
 - Bioma
 - Test o
 - Integrbiobas

brama:

le hydrogen

al and a thermal

Art:

h fitting mass

ollow up:

processes for