

European Hydrogen Safety Panel (EHSP) Clean Hydrogen JU Webinar "Computational Fluid Dynamics (CFD) for hydrogen safety analysis ", 07 December 2022

CFD for hydrogen tanks refuelling

Elena Vyazmina, Guillaume Lodier, Vincent Ren, Julien Martin

Introduction

The objectives of the **PRHYDE** project is to **develop recommendations and standardization** for **heavy duty** refuelling protocol for compressed gaseous hydrogen up to 700 bar. The protocol needs to be **safe**, **fast**, **efficient with reasonable costs**.

driving range: 800-1000 km fueling time: 10-15 min CHSS size: up to 100 kg mass flow: 120-300 g/s SoC: > 97%

Formulate recommendations for development & standardization of future protocols

External experts: HEXAGON, NREL, FirstElementFuel, Honda...

Methodology: **Experimental** and **numerical approaches** are used for the development of new refueling protocols. Numerical approaches can be:

- 0D/1D solving energy and mass balance in the tank (ex: SOFIL)
- 2D/3D CFD, to capture temperature gradient in the tank

Phenomenology: Straight injector

-20

Homogeneous gas temperature

- Small injection diameter
- High filling rate

Clean Hydrogen

Partnership

- \rightarrow Predominance of convection forces
- \rightarrow Good mixing and no stratification

Heterogeneous gas temperature

(thermal stratification of gas)

- Large injection diameter
- Low filling rate
- \rightarrow Predominance of buoyancy forces
- \rightarrow Presence of dead zones that limits the mixing which creates temperature stratification

EUROPEAN PARTNERSHIP

Π761

Experimental conditions

Tank characteristics of a tank

- Volume: 165L, L/D ~ 8
- Type IV
- Injector tilted 12°C upwards

Zoom on the tilted injector

3D view of half of the tank

Refuelling conditions (experimental test)

Initial pressure [bar]	Ambient temperature [°C]	Precooling temperature [°C]	Pressure profile [MPa/min]	Final pressure [MPa]	Final temperature [°C]	Total duration [s]
20	50	-40	8	789	75	600

Temperature at the different probes from experiment

Modelling challenges

Clean Hydrogen

Partnership

Conclusions & recommendations

Conclusions

- The RSM turbulence model captures the jet impingement and accurately predicts temperature gradients
- The computational time is reasonnable (~1 month for 500s of refueling)

Recommendations for CFD

- Special attention should be paid to
 - the turbulence model
 - the mesh
 - CPU time/accuracy trade-off
- Validate CFD against experimental results in similar conditions:
 - Injector geometry: diameter, orientation, length...
 - Configuration: horizontal/vertical

Keep in touch/Thank you

Elena VYAZMINA elena.vyazmina@airliquide.com

For further information https://www.clean-hydrogen.europa.eu/

