Fuel cells and hydrogen Joint undertaking

SCOTAS-SOFC project presentation

Programme Review Day 2011 Brussels, 22 November

http://www.fch-ju.eu/

SCOTAS-SOFC (256730)

Peter Holtappels Technical University of Denmark Risø DTU, Fuel cells and Solid State Chemistry Divison, 4000 Roskilde, Denmark

Objectives

- To demonstrate a new full ceramic SOFC cell with superior robustness compared to Ni-cermet based anodes and anode supports
 - Improved tolerance to sulphur, carbon deposition, & re-oxidation

Targets & Milestones

- Start date: Oct 1st 2010, duration 36 month
- Materials based approach to
 - robust system, simplified operation strategy, reduced costs
- Technical targets:
 - full cells, area of 100-140 cm² / short stack level tests
 - Sulphur content up to 100 ppm
 - S/H/O ratios corresponding to partly reformed hydrocarbons
 - 50-100 redox cycles with 100% re-oxidation
- Important milestones
 - Prototype cells (M11)
 - Performance improvement 0.25 \rightarrow 0.5 W/cm² (M15-M33)
 - 1 kW system test & assessment (M33)

Approach

- The project is based on materials development in FP6 IP's Real-SOFC & SOFC600
- Small consortium with clearly focussed partners/ responsabilities
 - R&D: provide materials and prototype cells
 - Industry: test and evaluate the SOFC perform.

Project philosophie, role of partners

Approach

Milestones are adjusted to reporting periods and meeting schedule Advisory board from industry

Expected impact

	Ni-based anode	SCOTAS anode	Concluding Advantages	Impact
Thermal	Higher than other	Close to other stack	Reduced thermal	Highly robust system
expansion	stack components	components	stresses, high	\rightarrow increased lifetime,
coefficient		(zirconia	robustness	simplified operation
		electrolyte, metallic	against thermal	strategy
		interconnect)	cycling and high	
			heating rates	
Chemical	Large expansion	Negligible chemical	High-robustness	Highly robust system
expansion	due to	expansion	against Redox-	\rightarrow increased lifetime,
during	oxidation/reduction		cycles, start-	simplified operation
redox-	Ni ↔ NiO		stop-cycles	strategy
cycling				
Sulphur	Sulphur contents in	Sulphur tolerant	No	Reduced system costs
tolerance	natural gas (few		desulphurisation	and maintenance
	ppm) lead to		of natural gas	(saving 0.01 – 0.02 €
	significant		and other fuels	per kWh)
	degradation		necessary	
Coking	Coking intolerant,	Coking tolerant	Operation	Simplified operation
tolerance	coking leads to		regimes, where	strategy, heating up
	metal-dusting of		coking occurs,	with gas possible
	the nickel \rightarrow cell		can be tolerated	
	failure		for a limited	
			time	

Progress & achievements

- First 12 month of the project:
 - Materials for prototype cells have been defined
 - Cell development has started acc. to plan
 - Electrode fabrication lines: tape casting, screen printing
 - Substrates: commercial electrolytes (HEXIS), partners own anode supports
 - Substrate fabrication: tape casting (organic and water based),
 - Technical cell dimensions
 - First cells (25 cm²) have been exchanged for testing (Jülich – Risø)
 - Test conditions identified by industry partners

AA: Stationary Fuel Cells

Application area: stationary fuel cells

- 45% electrical efficiency
- 80% CHP efficiency
- Use of multiple fuels
- 40000 life time
- Competitive costs
- materials R&D rel. to robustness, degradation and life-time under typical operation
- component and subsystem development

AA: Stationary Fuel Cells

- The project addresses critical issues related to the operation of micro CHP FCs
 - Start Up/Shut down
 - redox stability, C tolerance
 - Grid outage/system failures:
 - redox, sulphur, C-tolerance
 - Costs: replacement of Ni

Activities vs MAIP/AIP

- Component development
 new cell type
- Operation relevant performance
 - Short stack level testing
 - Specifications acc to industrial partners
 - Full system test (Hexis Galileo platform)
 - Industrial Advisory Board

Gaps/bottlenecks

 The limited funding rate might bear a risk for some partners (esp. academic partners)

Comments to MAIP/AIP

- The R&D on powders/materials could be emphazised more.
- It is questionable whether or not with respect to industrially relevant production all materials & powder properties are identified

Training & Dissemination

- No particular training/education activities
- Expected to involve young, eraly stage researchers in the project
- Dissemination
 - Public reports on materials and electrode performance / cell tests foreseen
 - Publishabe results will be communicated to the scientific community
 - Advisory Board is expected to assists in identifying potentially interested other companies to be informed about the projects

Beyond SCOTAS-SOFC

- The project aims at developing a prototype and demonstrate the potential a new type of SOFC cell
- Upscaling potential will be evaluated as a horizontal activity, however certain risks still expected to remain
- If demonstration is successful, a direct collaboration between powder supplier and SOFC manufacturer might be needed to further adapt to a more industrial production technology

Useful References

- Fuel Cells and Hydrogen Joint Undertaking (FCH JU) Programme Office http://www.fch-ju.eu/
- FCH JU **reference documents** (incl MAIP/AIPs) <u>http://www.fch-ju.eu/page/documents</u>
- European Industry Grouping for Fuel Cells and Hydrogen, NEW-IG http://www.fchindustry-jti.eu
- European Research Grouping for Fuel Cells and Hydrogen, N-ERGHY <u>http://www.nerghy.eu</u>
- **European Commission** non-nuclear Energy Research (incl FCH) <u>http://ec.europa.eu/research/energy/eu/research/index_en.htm</u>