AD ASTRA

Harnessing Degradation mechanisms to prescribe Accelerated Stress Tests for the Realization of SOC lifetime

Massimiliano Della Pietra, PhD

ENEA

www.ad-astra.eu

davide.pumiglia@enea.it

European

H

EUROPEAN PARTNERSHIP

H,

FOO

Week

 \diamond

ᆸ

#EUResearchDays #PRD2022 #CleanHydrogen

Clean Hydrogen Partnership

3,008,426.25€

Project summary

Global positioning vs SoA

European

Hvdroger

- Useful lifetimes of >80kh expected/needed for commercial fuel cell stacks.
- No reliable degradation models currently available nor validated test procedures to predict durability in a practical timeframe.
- Resource- and time-consuming real-time durability tests required for verification of material/component modifications

Application and market area

- SOC Combined Heat & Power generators (CHP).
- SOC electrical energy storage into chemical energy (P2X).

Main Objectives

- Failure Mode and Effects Analysis (FMEA) for SOC stacks tested in the field.
- Prioritization of dependent and independent variables causing observed degradation.
- AST protocols that address realistic failure modes of <u>fuel</u> <u>electrode</u>, <u>oxygen electrode</u> and <u>interconnect</u> in P2X and CHP.
- Target AST durations < 3000 hours ← → real-world stack < 40,000 h identifying transfer functions of degradation.
- Remaining Useful Life (RUL) prediction models based on operating profile.
- A generalized methodology for the definition of ASTs submitted for standardization to the International Electrotechnical Commission (IEC)

Progress/Actions - modeling

Achievement to M44

Local models Multiscale models

50% 75%

Ni-YSZ electrode LSCF electrode State-of-Health characterization Degradation function Degration rate evolution

Status at month 44 of a 44 months project at date 31/08/2022

- Identification of the main degradation parameters from available data and high-level physical models.
- Development of grey-box (i.e. simplified) degradation models, describing the time evolution of degradation parameters.
 Stack performance and lifetime models, with embedded degradation mechanisms, simulated through parameter-based and statistical approaches.
- Association of suitable stochastic and signal treatment based algorithms to define uncertainties in high and low-level physical models in order to.
- Identification of statistical approaches allowing extrapolation of accelerated variables from high to low acceleration levels.

Exploitation Plan/Expected Impact

Impact

Enhanced understanding of the correlation between user profile and degradation mechanisms on SOC interconnects, anodes and cathodes.

- Extraction of valuable information from previously performed studies and projects. It was gathered and summarized in the "Review of SOC degradation mechanisms and modelling approaches".
- Experimental data base beyond the SoA by the joined efforts of the industrial and research: post-mortem lab testing of samples prepared from field tested stacks up to 20000 h.

Correlation between AST results and lifetime in a user profile.

- Iteratively updated DoEs ultimately converging into validated ASTs, replicating the degradation effects seen in "real world" conditions for a particular user profile.
- Dual modelling approach, deterministic models with statistical and stochastic analysis, to capture the by nature probabilistic degradation processes.

Validation of the methodology.

- Benchmarking with significant numbers of field-tested samples and stacks, for each of the two operating profiles (P2X and CHP).
- Dedicated experiments, based on methodical design of experiments for maximization of statistical significance and model validation.
- Validation of the predicted remaining useful life (RUL) both in accelerated stress as in reallife conditions

Recommendations for international standardisation of AST with IEC TC105 which should lead to a New Working Item Proposal (NWIP).

This impact is on track and a first ad hoc working group on AST procedures (AHG11) has been instated in TC105 of the International Electrotechnical Commission.

Exploitation

- 15+ open access scientific publications;
- 10+ experimental datasets available (and re-usable) on ZENODO;
- 1 dedicated Workshop jointly organized by AD ASTRA and Ruby projects (+ REACTT project participation)

EUROPEAN PARTNERSHIP

Co-funded by the European Union

European Hydrogen Week

Risks, Challenges and Lessons Learned

Description of risk		Lesson learned
(Low/Medium/High)	Proposed risk-mitigation measures	
Database not available or inaccessible (P=1, S=2, D=2: LOW)	The basic structure of the database comes straight out of ENDURANCE and will be hosted on IEES servers with linked copies placed with partners.	No mitigation measures were needed since the availability of the database has been guaranteed for the entire duration of the project
Inability to identify degradation mechanisms from "real world" agedstack components (P=1, S=3, D=3: LOW-MEDIUM)	AD ASTRA is nourished since the very beginning bythe output and know- how of other projects addressing this issue (WP2) therefore a large database will be available.	The huge know-how coming from other projects and collected in the AD ASTRA database was useful to integrate the information collected from the real world samples.
Inability to correlate "real life" degradation data with experimental degradation data (P==2, S=3, D=6: MEDIUM-HIGH)	Interaction with external advisors. Approximation of effects with higher-level (more macroscopic) parameters. Update and restriction of DoE to evaluate fewer mechanisms and gain more data.	The availability of the operational history of aged samples coming from real world environment is crucial for the correlation of degradation and AST
Inability to integrate <i>ex-situ</i> aged components in a new stack for <i>in-situ</i> verification (P=3, S=2, D=6: MEDIUM-HIGH)	Go/no-go milestone at M16 (MS8) after second experimental cycle. Focus on accelerated ageing for component evaluation & aggravated tests for stack evaluation. Validate models of long-term degradationwith ongoing field tests.	The samples aged via ex-situ ASTs were not usable in a stack environment after the ageing process. Therefore the in situ ASTs tests were very useful to complete the characterization of degradation mechanisms
Experimental facilities temporarilynot available (P=1, S=2, D=2: LOW)	All equipment is available and has been validated in previous projects. Buffering time allocated in eachexperimental cycle to allow partners to carry out unperformed tests.	No bottleneck occurred concerning availability of test benches
Slow test/modelling data feedback(P=2, S=1, D=2: LOW)	Interdependence between modelling and experimentation will be manageable. If experimental data is not yet available, models can be pre-validated with other models and/or external data.	The know how collected in the knowledge pool of the AD ASTRA database was very useful in terms of validation of modeling developed with experimental data
Failure of implementing models describing degradation mechanisms into performance models (P=2, S=2, D=4: MEDIUM)	Powerful statistical tools are available and being developed that need to dialogue with performanceand finite-element models. Separate models can be generated for each objective, that can be combined in an overarching interface.	Physics-based degradation functions have been introduced into performance models to predict the Remaining Useful Life (RUL). Moreover, degradation accelerating factors have been also correlated to cell operation through specific transfer functions.

EUROPEAN PARTNERSHIP

#EUResearchDays #PRD2022 #CleanHydrogen