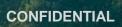


EARLY BUSINESS CASES FOR H2 IN ENERGY STORAGE AND MORE BROADLY POWER TO H2 APPLICATIONS

FCH-JU Programme Review Days Brussels, 23-24 November 2017



PUBLIC

TRACTEBEL

INTERNAL

RESTRICTED

Objectives of P2H Early BizCases

© kova979 - stock.adobe.cor

engie

TRACTEBEL

Identify bankable Power-to-Hydrogen business cases for 2017-25 in the EU-28

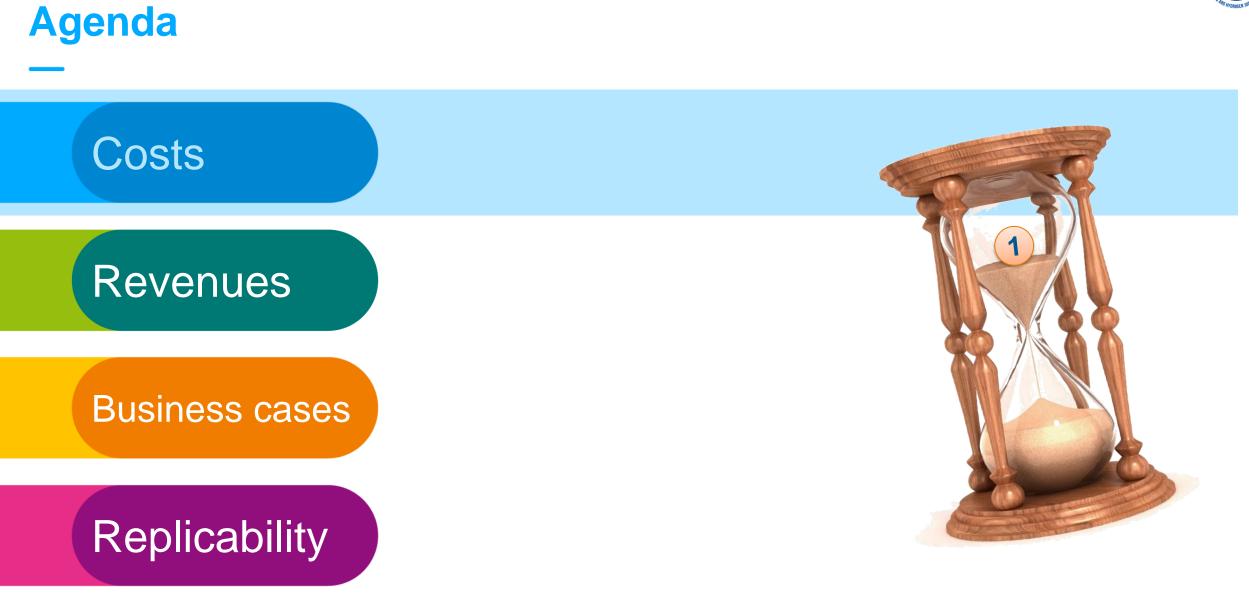
Within the EU-28, **identify locations with favorable electricity conditions** for P2H systems (at sub-national level)

Study **three concrete P2H business cases** for a specific location and application (industry, mobility), quantifying key performance indicators (CAPEX, revenues, margin,..)

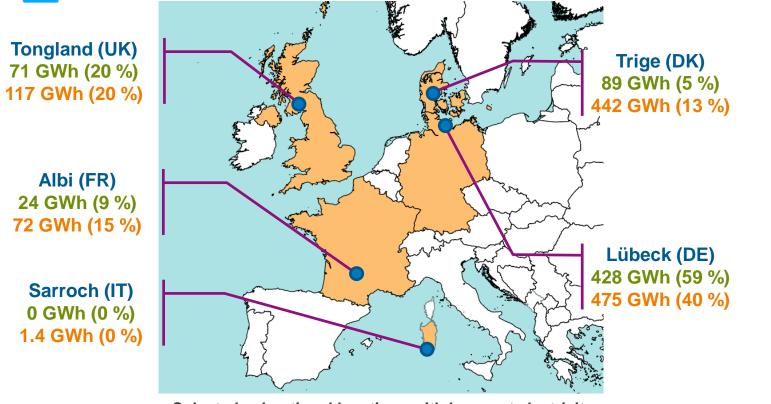
Derive **boundary conditions for profitability** and assess **replicability potential** in the EU-28

Key message:

TRACTEBEL


engie

There are bankable business cases for PtoH in Europe already today

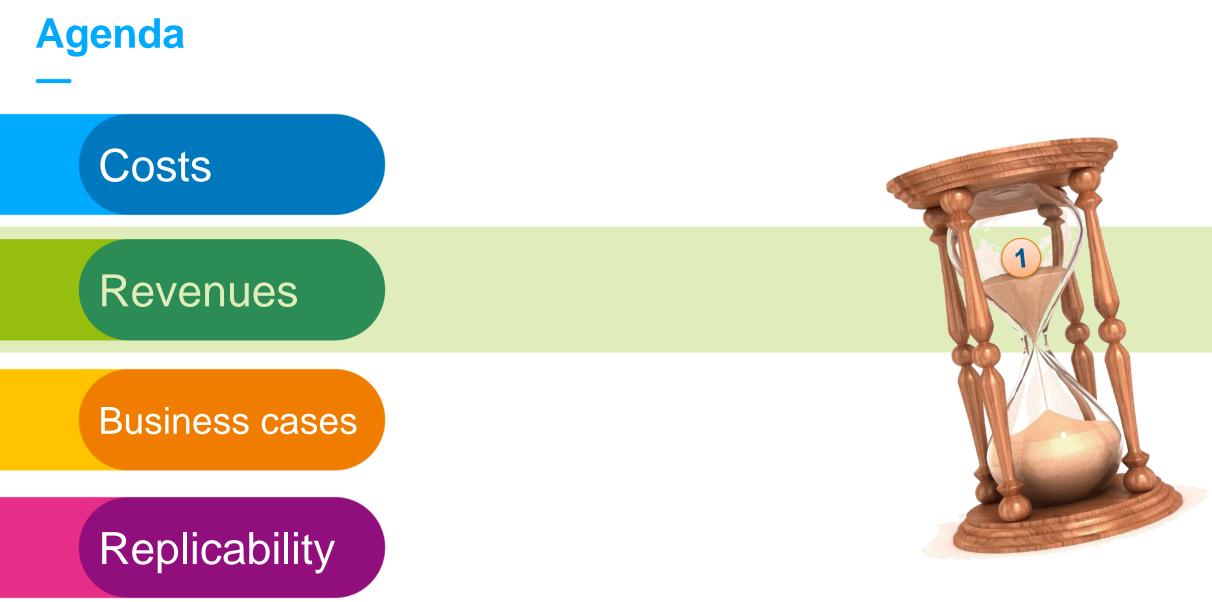

- By 2025, the European market for PtoH is estimated at a cumulative 2.8 GW, representing a market value of 4.2B€ and 400 ktons H2 per year.
- Bankability can be achieved by complementing hydrogen sales with electricity grid flexibility services
- Combining PtoH for mobility/industry applications and gas grid injection is more cost-effective than stand-alone injection
- Gas grid injection is a risk mitigation instrument until H2 demand picks up
- The Clean Energy package is a unique opportunity to create a market for PtoH in oil refineries
- PtoH is a practical and system-beneficial way to value excess of RES but requires a long-term view on grid fees, taxes and levies to enable bankability

For 5 EU member states, locations with low-cost electricity were identified Congested areas are found where there is local overproduction of RES

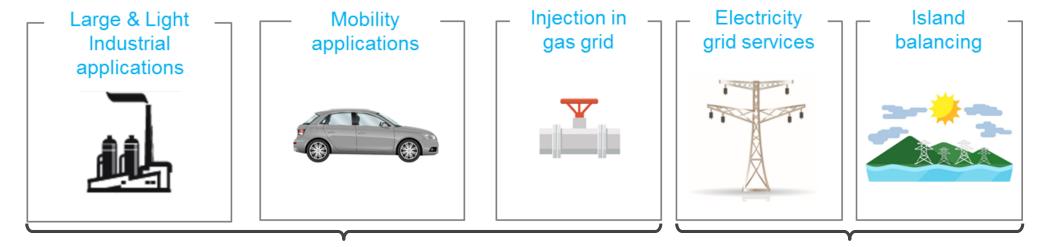
Selected subnational locations with low-cost electricity Numbers: local curtailment frequency (% year¹) 2017 / 2025

- Comments
- Simulations with grid constraints show significant RES curtailment
- National level: mostly below 2% of total RES production, except for Denmark
- Node-level [HV/MV transformer]: massive curtailment shares in certain areas, up to 40%
- Curtailment occurs throughout the year in some locations

Important note: These areas are unique opportunities based on their RES curtailment potential. They are not representative of the rest of the country.



RES curtailment is a pressing issue but linked to specific areas, as the example of Germany shows


Power to Hydrogen Early Business Cases – FCH-JU Programme Review Days, 23-24 November 2017, Brussels

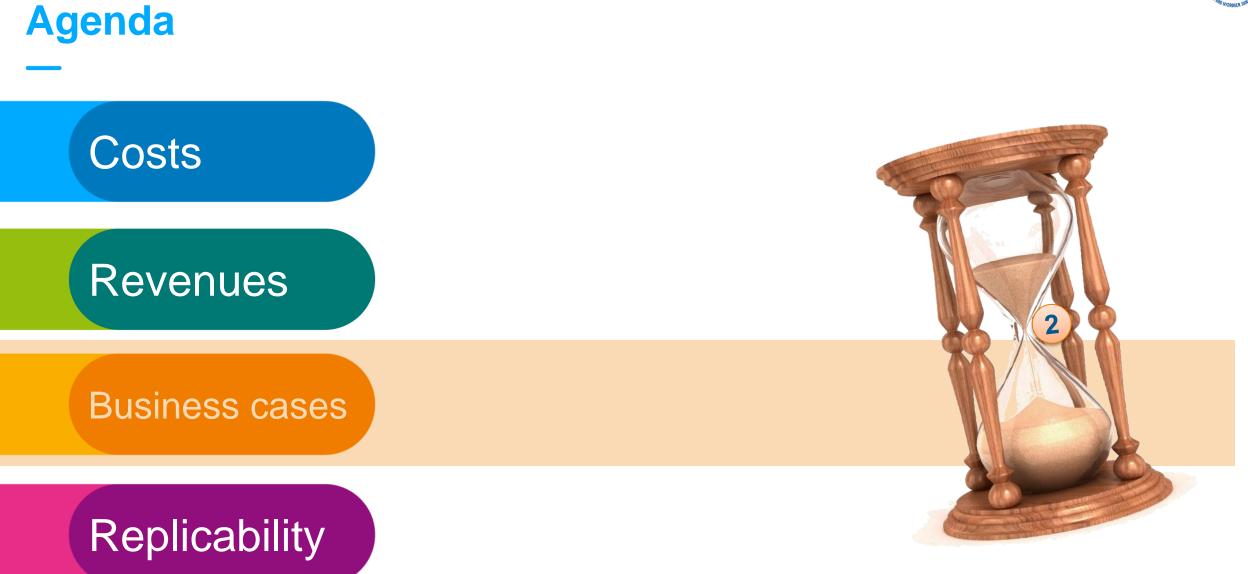
Power-to-Hydrogen potential revenues streams: Electrical grid services should not be considered as stand-alone applications

Revenues from hydrogen sales

PtoH application	Potential revenues* [k€/MW/year]
Refineries, without carbon penalty	237 – 512
Refineries, with carbon penalty	792 – 1068
Light industry market (delivery by trailer)	499 – 1235
Mobility (delivery to the HRS)	526 – 920
Hydrogen injection into gas grid based on national biomethane injection tariff	171 – 350**
TRACTEBEL	

engie

Revenues from grid services


PtoH application	Potential revenues* [k€/MW/year]
Balancing services	2 -17
Frequency control services	70 - 224
Distribution grid services	< 1

Primary applications

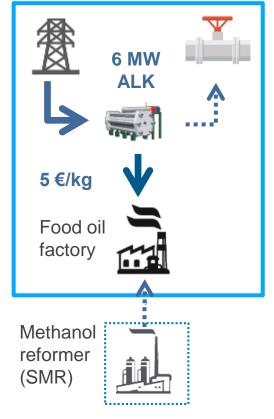
Secondary applications (combinable with primary applications for little extra cost)

Three different business cases were analysed in three regions both 2017 and 2025

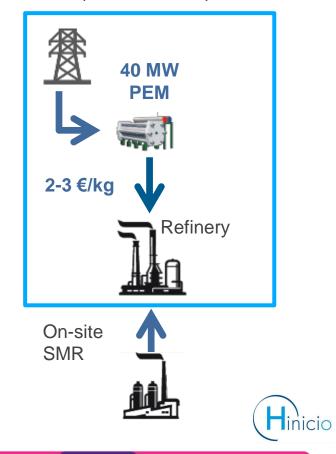
Semi-Centralised production for mobility (Albi-FR)

On-site production for mobility can generate profitable business cases but is excluded due the fact it has been covered intensively in previous studies.

engie


TRACTEBEL

Scope


Boundary

2-12 MW **PEM** On-site 6-7 €/kg storage **Regional** network of hydrogen stations

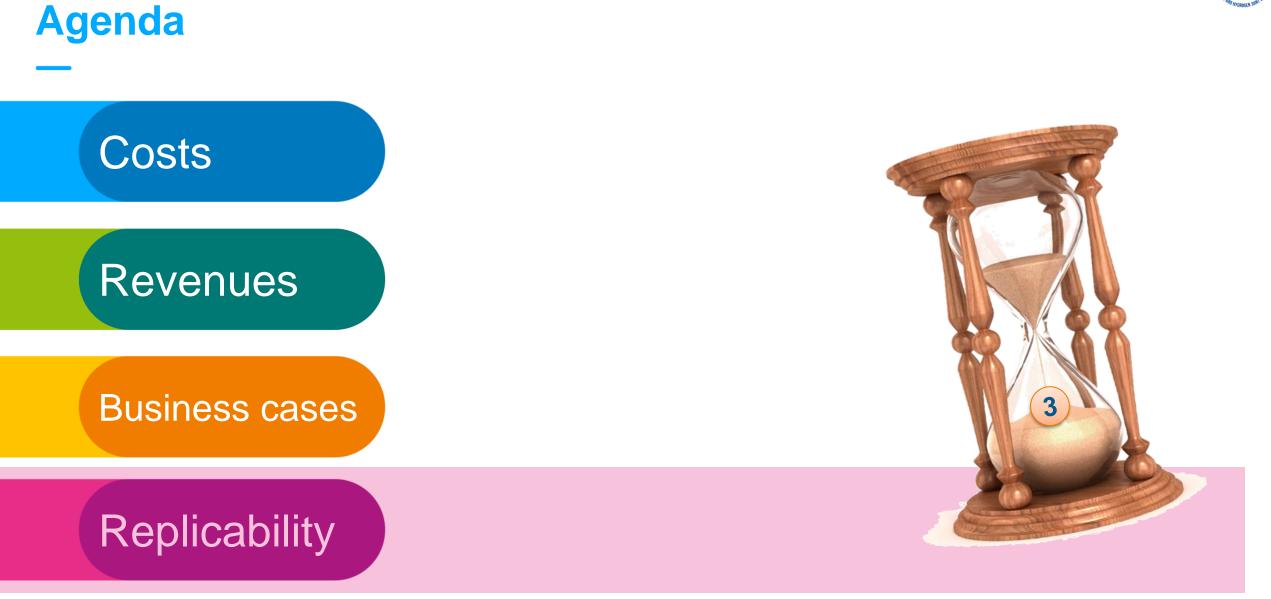
Large industry Refinery (Lübeck-DE)

Bankable business cases were found in the best locations

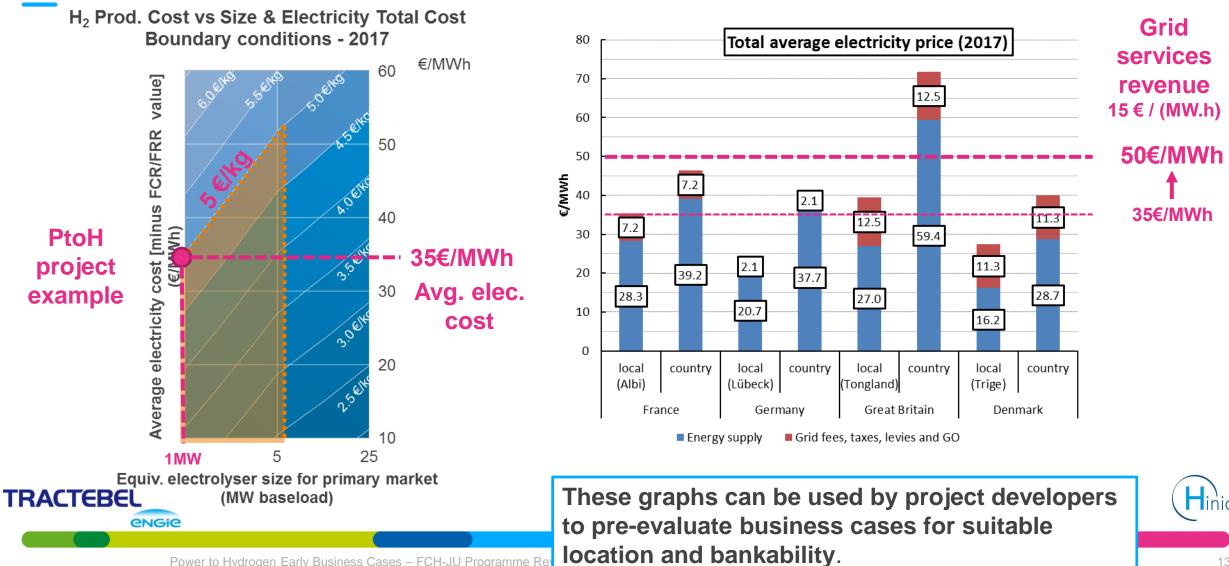
		- Her	A	<u>A</u>			
WACC on CAPEX: 5% Project lifetime: 20 years		SC mobility (Albi, France)		Food industry (Trige, Denmark)		Large industry (Lubeck, Germany)	
	2017	2025	2017	2025	2017	2025	
Primary market H2 volume (t/year)	270	950	900	900	3 230	3 230	
Average total electricity price for prim. market (€/MWh)	44	45	38	47	17	26	
Net margin without grid services (k€/MW/year)	39	71	228	248	-146	30	
Net margin with grid services (k€/MW/year)	159	256	373	393	-13	195	
Share of grid services in net margin (%)	75%	72%	39%	37%	-	85%	
Payback time without grid services (years)	11.0	9.0	4.6	3.7	-	8.4	
Payback time with grid services (years)	8.0	4.5	3.4	2.7	-	3.5	
Key risk factors	Taxes & H2 price Size of f Injection FCR val	fleets n tariff	 H2 price Taxes & FCR value 	Grid fees	 Taxes & FCR val Carbon 		

Fuel

Profitable stand-alone primary applications have a payback time ranging between 4 and 11 years. Providing grid services can reduce payback time by 30-50%.



TRACTEBEL


engie

Rule of thumb: PtoH business cases profitability depends on: (1) primary market size, (2) hydrogen selling price and (3) average electricity cost

By 2025, the European market for PtoH is estimated at a cumulative 2.8GW, representing a market value of 4.2B€.

EU-28 market potential	Cumulative market size	Market value	H2 Volume	-
2017	1500 MW	2.6 B€	200 ktons/year	
2025	2800 MW	4.2 B€	400 ktons/year	

Bankability boundary conditions:

Average electricity cost of 40-50 €/MWh or lower (baseload and incl. grid fees, taxes & levies)

Enhancing conditions for replication:

- Access to curtailed RES at a price discount of 60% compared to the system price;
- Partial exemption from grid fees, taxes & levies.
- Recognition of green H₂ as compliance option in Fuel Quality Directive

Policy options to realize this market potential

Business cases replicability relies on:

 \rightarrow Exemption from grid fees, taxes or levies

A (partial) exemption can be justified by the grid-beneficial mode of operation of electrolysers

→ Avoid inflating electricity prices with costs unrelated to electricity supply

→ Access to curtailed electricity

Bilateral contracts between RES operators and consumers can lead to lower electricity price

→ Provide a clear regulatory framework on how to access curtailed RES electricity

Access to grid service revenues

→ Electrolysers can provide grid frequency control when allowed for loads, with more benefits in asymmetric procurement

→ Develop EU framework guidelines to provide a level playing field for access to grid frequency control services

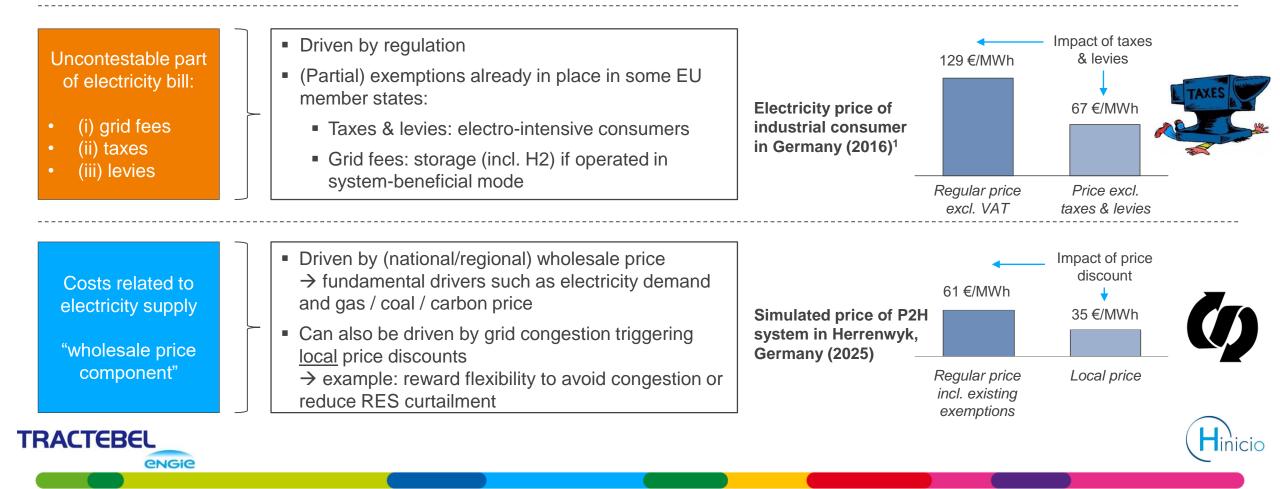
3

engie

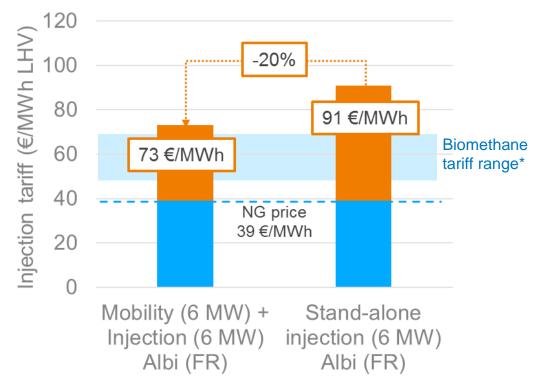
2

Recognition as green hydrogen

- \rightarrow Power-to-hydrogen electrolysers can provide gas with low carbon intensity
- → Provide a level playing field for the injection of carbon lean gas into gas grid, be bio-methane or green hydrogen
- → Recognize green hydrogen as compliance option to reduce carbon intensity of conventional fuels in the forthcoming revisions of the FQD and RED II
 TRACTEBEL


Annex

Early business cases are found in low-cost electricity areas (≤ 40-50 €/MWh), driven by: (1) low burden of grid fees, taxes & levies (2) <u>local</u> price discounts


Total (baseload) electricity price = Total cost of supplying electricity to the electrolyser (≠ wholesale electricity price); includes grid fees, taxes, levies and green certificates for electricity purchased from the grid

Combining PtoH for mobility/industry applications and injection is more cost-effective than stand-alone injection for greening of natural gas

FIT rate for injecting 6MW with payback time of 8 years (ref. case **Albi-2025**)

Green H₂ gas grid injection lowers the carbon footprint of natural gas and should thus be eligible for feed-in tariffs in line with existing supporting regimes for bio-methane.

Combining injection with mobility or industry reduces the level of feed-in tariff needed.

The bulk of the electrolyser CAPEX is paid by mobility or industry clients. The injection tariff only needs to cover marginal injection costs (and very limited injection-specific CAPEX).

For this reason, H₂ injection into gas grid is considered as a secondary application

Should the stand-alone injection business case have a tariff of 73 €/MWh, the payback time will more than double to > 16 years.

Deep dive on Refinery in Germany (Lübeck / Hemmingstedt) Context, Local refinery and Scenario

Local context

- Four local refineries near Lübeck
 - 3 in Hamburg @ 70 km from Lübeck
 - 1 in Hemmingstedt / Heide @ 110 km from Lübeck

Local refinery

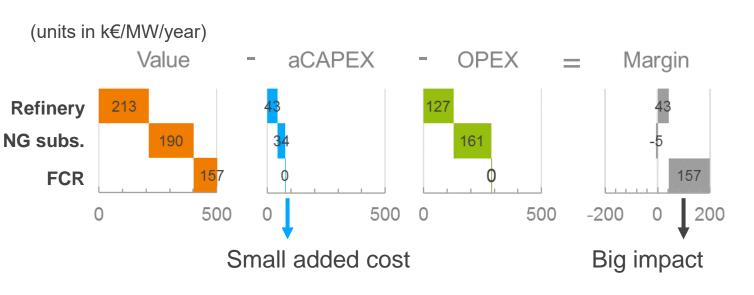
- Heide refinery is the one with the highest H₂ demand with 3.4 t/h (30 000 t/year)
- On-site SMR is considered to supply the current H₂ demand

Scenario

engie

TRACTEBEL

Focus in 2025 on a multi-MW electrolyser project to supply part of increasing H₂ demand and to reduce carbon footprint of fuel production. The electrolyser complements local SMR. 2017 & 2025: 3230 t/year (50% of increasing demand) \rightarrow 20 MW electrolyser The PtoH system is oversized by 200% to compete against the SMR production



PtoH can compete with H₂ production from SMR at big volume

Main parameters	2025
Grid fees, taxes, levies and Guarantee of origin (DE)	1.7 €/MWh (EnWG §118)
Grid service value	19 €/(MW.h) (FCR)
Carbon penalty	80 €/tCO ₂ ¹
Value H ₂ from SMR incl. carbon penalty	2.6 €/kg (prim.) 2.4 €/kg (NG subs.)
Primary market size	3 230 t/year → 20 MW
Unit sizing	200% w/ NG sub.
Technology	PEM
Op. time and total elec. price (prim.)	48% @ 26 €/MWh
Op. time and total elec. price (NG Sub.)	47% @ 34 €/MWh
H2 production cost	2.3 €/kg
Payback time	3.5 years

TRACTEBEL

engie

NG substitution allows valorisation of remaining electrolyser capacity by bringing additional revenues from electrical grid services.

PtoH production cost can be competitive against SMR. **Payback time with grid services is 3.5 years**.

Food industry business case profitability

Main parameters	2017
Grid fees, taxes, levies and Guarantee of origin (DK)	11 €/MWh
Grid service value	17 €/(MW.h) (FRR)
H ₂ market price	5 €/kg

Primary market size	900 t/year \rightarrow 6 MW
Unit sizing	100% w/o Injection
Technology	ALK
Op. time and total elec. price (prim.)	95% @ 38 €/MWh
H2 production cost	3.5 €/kg
Payback time	3.4 years

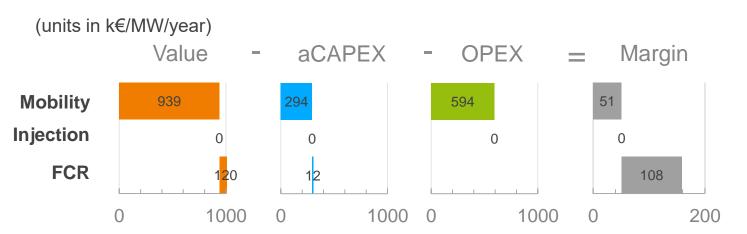
(units in k€/MW/year) Value aCAPEX OPEX Margin _ Food 784 403 240 industry 0 0 0 Injection FRR 133 0 500 1000 0 500 1000 0 500 0 500 1000 1000

Light/food industry as a primary application for PtoH is **already a profitable and existing market**.

However, PtoH can benefit from providing grid services to generate additional revenues which can **boost the net margin by 39% at little additional investment.**

Asymetric grid services benefit to ALK electrolyser by taking advantage of their cheaper cost.

Hinicio

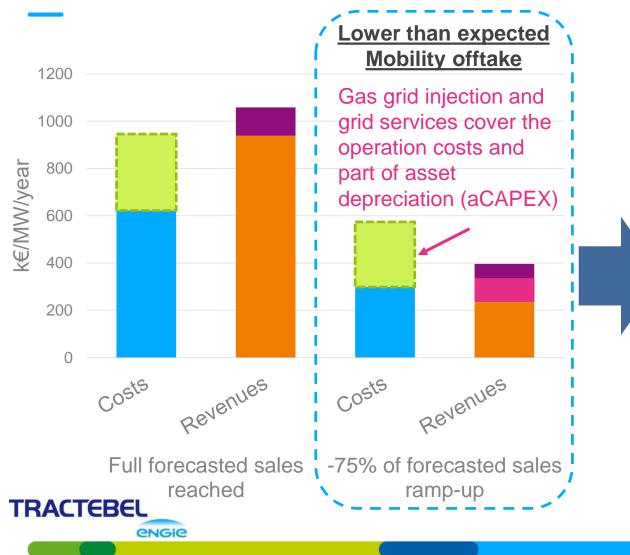

Semi-centralised production for mobility business case profitability

Main parameters	2017
Grid fees, taxes, levies and Guarantee of origin (FR)	13 €/MWh (incl. partial exemption because of electro-intensive status)
Grid service value	18 €/(MW.h) (FCR)
HRS distance	20 km one-way
H ₂ market price	7 €/kg

Primary market size	270 t/year → 2 MW
Unit sizing	100% w/o injection
Technology	PEM
Op. time and total elec. price (prim.)	95% @ 44 €/MWh
H2 production cost	6.7 €/kg
Payback time	8 years

TRACTEBEL

engie



Mobility as a primary application for PtoH can be **profitable today at large volume**.

Provision of grid services can **boost significantly the net margin by 75% at little additional investment.** This will accelerate the **payback time from 11 to 8 years.**

Gas grid injection is a short-to-mid-term risk mitigation instrument through the valley of death for mobility market

Gas grid injection is an enabler of Power-to-Hydrogen for mobility applications

- Gas grid injection is a complementary application that can increase the revenues of an electrolyser used for mobility or industry.
- Gas grid injection helps mitigate the risk of lower-than-expected mobility demand ("valley of death") covering the operation costs and part of asset depreciation towards breakeven.
- aCAPEX
 OPEX
 OPEX
 Primary

Mobility business case Forecasted demand: 270 t H₂/year 2 MW PEM in FR (Albi) 2017 Injection tariff @ 90€/MWh LHV

Power to Hydrogen Early Business Cases – FCH-JU Programme Review Days, 23-24 November 2017, Brussels