Hydrogen-powered aviation

A fact-based study of hydrogen technology, economics, and climate impact by 2050

Presentation at the FCH JU Programme Days, 23rd November 2020

Project team

Martin Linder

Markus Wilthaner

Maurits Waardenburg

Daniel Riefer

Julian Hölzen

Contact Martin_Linder@mckinsey.com http://mckinsey.com

With input from a broad industry and research coalition this study evaluated the potential of hydrogen for aviation

Study focus

Evaluation of **potential**, **technical and economical feasibility** of hydrogen for aviation

Modeling of implications on aircraft design, airport infrastructure and fuel supply chains

Recommendation of a R&I roadmap

Clean Sku:

Study results in a nutshell

Our perspective on hydrogen-powered aviation

Technology

Hydrogen could be feasible to power aircraft with entry-into-service as early as 2030-2035 for short-range segments; for the fuel supply and refueling infrastructure the switch to LH_2 can be handled by 2040; however, aircraft and infrastructure challenges seem manageable

Economics

Less than 20 USD per PAX additional costs on a H_2 -powered short-range flight, 20% less compared to synfuel (from green hydrogen and direct air carbon capture) to achieve the same climate impact (medium range, 2040); synfuel will likely remain more competitive for long-range aircraft in 2050

Climate impact

Zero CO₂ and 70% reduction in climate impact by converting 40% of the fleet to H_2 with 15% less global green energy requirements for the sector in 2050. Hydrogen reduces tailpipe CO2 emissions to zero and reduces non-CO₂ emissions such as NOx and contrails

Research & Innovation

First prototype by 2028 required for short-range – significant investments for R&I needed now to meet 2050 target. Advancement on components, aircraft systems, infrastructure and regulatory framework needed

Total cost of ownership increases by 25% or 20 USD/PAX for a short-range aircraft

USD cents per available seat kilometer (CASK), 2,000 km flight with 165 PAX in 2040

As the number of flight cycles decrease, CAPEX and crew costs will increase. Other costs also cover increased fees due to higher MTOW

2. Synfuel from green hydrogen with carbon from direct air capture

1.

Scenario for full decarbonization in 2050: Hydrogen and synfuels where most economic

	1					-			
	Range,	up to in	thousa	ands k	m				
PAX	0.5	1	2	3	4.5	7	8.5	10	>10
Commuter ¹									
Regional ¹		2035 sho rcraft ent							
Short- range		are H ₂ -pov							
Medium-	Starting	j 2040 50 9	% of nev	v mediı	ım-range	are H_2 -	powered		
range	SAF (inc	cl. synfuel	and oth	ers) nov	verlong-	rangea	ircraft an	d	
Long- range ²		nedium-ra				rangea	relation		

1. Potential EIS in 2030

 $2. \quad Technical \, feasible \, with \, H_2 \, propulsion, \, but \, not \, as economic \, as synfuels$

3. Measured in CO2eq; Asthe deployment of H2 aircraft will further grow after 2050 the reduction of climate impact will scale to 70%

Potential impact by 2050

>>> ~40% aircraft of fleet powered by H₂

I.8 Gtons of CO₂ abated achieving net zero target

0.8 Gtons additional reduction of non-CO₂ emissions³

Hydrogen requires significant Research & Innovation 4 main research areas for roadmap

202	20 20	28 20	2050	
Main milestones	Proof of tech. feasibility and certification of commuter aircraft Short-range aircraft demonstrator	Medium-range aircraft demonstrator Safe and efficient airport refueling setup	Demonstrator of revolutionary long-range aircraft Large scale refueling infrastructure	
	LH ₂ t	tanks		
	Fuel cell			
र्ूरे Components	H ₂ tu			
	Onboard LH ₂ distributi			
Aircraft	Commuter demonstrator	Medium-range demonstrator		
U system	Regional, short-range demonstrator	Revolu	tionary long-range demonstrator	
	Efficient refueling systems	At-scale liquefaction and LH ₂ handling		
	Safety measures an	d parallel operations		
	Airpor	LH ₂ hydrant refueling		
/¦\ Regulatory	Climate impact measures			
/ \ framework				

Key takeaway: Hydrogen propulsion has significant potential as one major lever of decarbonization alongside other technologies

Technology Hydrogen is a compelling option to power aircraft, key technologies to be developed and

uncertainties addressed

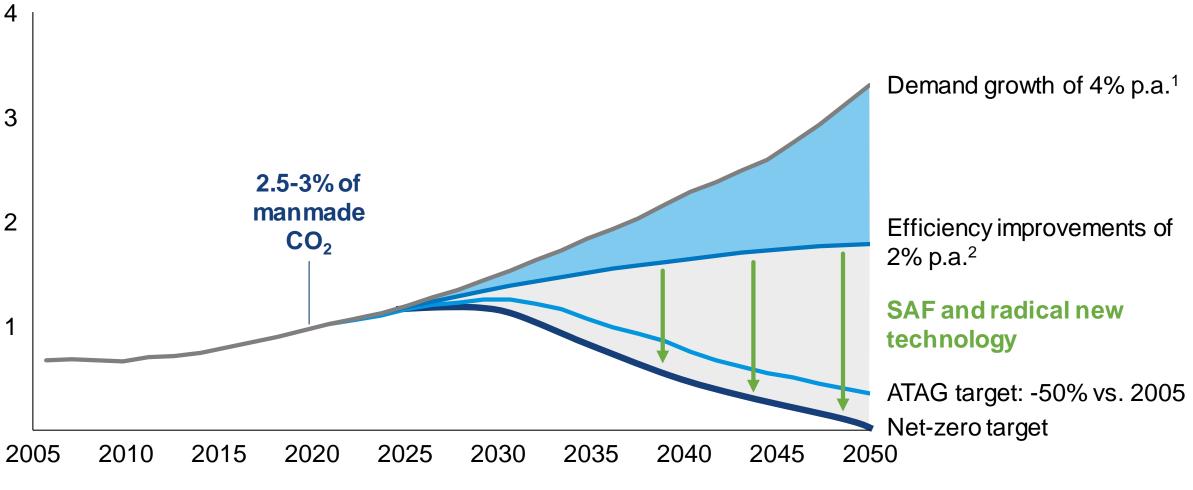
Research & Innovation Demonstrator by 2028 required for short-range and significant investments for R&I needed now to meet 2050 target

Economics Less than 18 EUR per PAX additional costs on a H2-powered short-range flight **Climate impact**

Zero CO₂ emissions and up to 70% reduction

of total climate impact compared to a kerosenepowered aircraft in 2035

Backup



Aviation needs new propulsion technologies and/or fuels to decarbonize

Gt CO_2 emissions from aviation

DOES NOT INCLUDE COMPENSATION SCHEMES

1. Assumption based on growth projections from ATAG, IATA, ICCT, WWF, UN

2. ICAO ambition incl. efficiency improvements in aircraft technology, operations and infrastructure - however highly ambitious compared to other sources (EASA)

Years

10

Methodology: We evaluated the potential of hydrogen propulsion in five segments

Share of total CO₂ emissions

____< 0.1% _____ 0.1-2% _____ 2-5% _____ 5-10% _____ 10-15%

	Range u	Range up to in thousand km					Share of total				
ΡΑΧ	0.5	1	2	3	4.5	7	8.5	10	>10	CO ₂ emissions	Global fleet
Commuter <19										<1%	4%
Regional 20-80										3%	13%
Short-range 81-165										24%	53%
Medium-range 166-250										43%	18%
Long-range >250										30%	12%

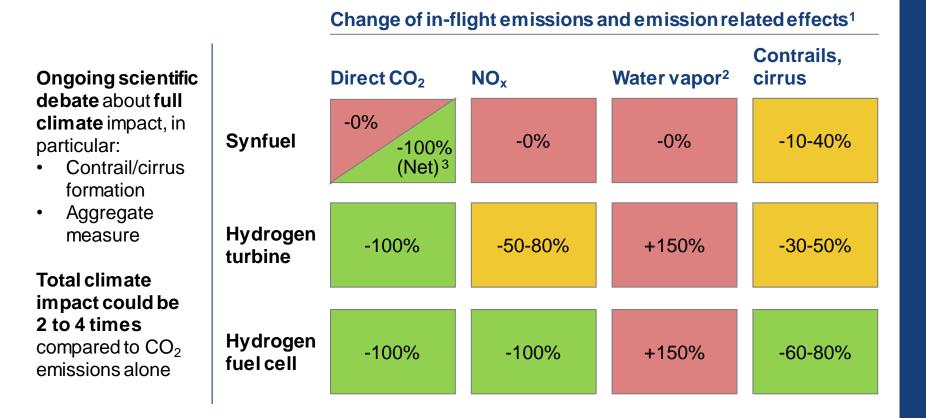
5 segments defined for evaluation, covering ~90% of total emissions

Dimensions of evaluation

Climate impact

Technical feasibility: Aircraft design Infrastructure

11


Clean Sku:

Economics

ं

Climate impact: H₂ propulsion has no CO₂ emissions and biggest potential to reduce climate impact

Compared to kerosene-powered aircraft, timeframe until 2100

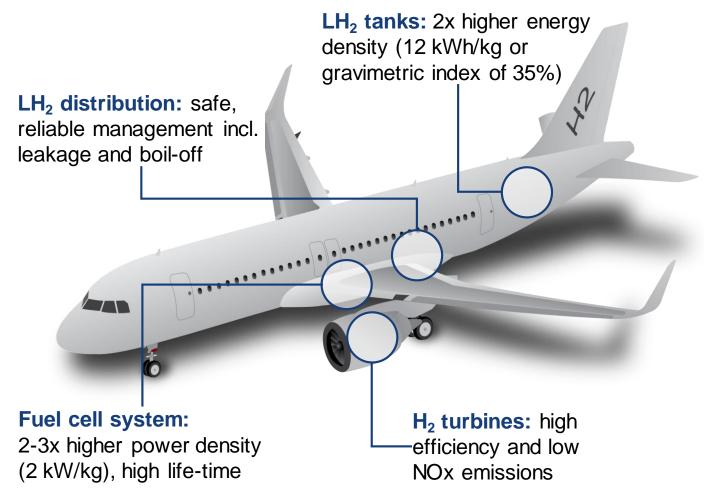
Climate impact reduction potential⁴

-30-60%³

-50-75%

-75-90%

1. No full LCA considered, but assuming decarbonized production and transportation of fuels in 2050


- 2. 10 times lower climate impact than from CO₂ emissions
- 3. Net CO₂ neutral if produced with CO₂ captured from the air

4. Measured in CO2 equivalent compared to full climate impact of kerosene-powered aviation

Aircraft design: four technology improvements...

TIMEFRAME 2035

EXEMPLARY PICTURE

...could enable H₂ aircraft

Example result of simulation of H₂-powered short-range aircraft

Mission: 2,000 km, 165 PAX, Mach 0.72

Propulsion: parallel hybrid of H_2 turbines and fuel cell system

Evolutionary design: adjusted for LH₂ systems, **+10% longer fuselage**

100% decarbonization
75% climate impact reduction
-5% energy demand
15 years to entry-into-service

13

ं

Three major infrastructure challenges to roll out LH₂ aviation; refueling challenge most significant

Can be accommodated in prevailing infrastructure

Updates of infrastructure / operations required

Full overhaul of infrastructure / operations required

		Until 2040 (hydrogen 15% of fleet)	From 2040 to 2050 (hydrogen 40% of fleet)
1	H ₂ production and distribution for aviation	5% of global hydrogen demand Can be served with LH₂ trucks from central production sites or on-site	10% of global hydrogen demand At-scale distribution requires pipelines to airport
2	Required LH ₂ airport infrastructure	Centralized liquefaction (unless on-site production) Truck-based refueling No major infrastructure updates	Onsite liquefaction At-scale refueling systems Larger gate sizes and on-ground traffic changes
3	Refueling times	Within usual turnaround times for shorter range flights	Extends beyond usual turnaround times for longer range flights ¹
		New safety regulations required for parallel operations	
		No insurmountable roadblocks in early ramp-up years	Significant but manageable challenges in scale-up years
1. Considering s	similar flow rates like kerosene and	double the amount of refuelling points	

14

H₂ propulsion could be lower cost up to medium-range compared to synfuels which would be more competitive for long-range

TIMEFRAME 2040

	Projected years until earliest EIS ¹	Costs com Kerosene	pared to Synfuel		Datement c JR per ton 0		
Commuter 19 PAX, 500 km	10	+5%	-10%	27		Synfuel 250	
Regional 80 PAX, 1,000 km	10-15	+10%	-10%	5	4		
Short-range 165 PAX, 2,000 km	15	+25%	-5%		80	Synfuel 200	H ₂
Medium-range 250 PAX, 7,000 km	20	+35%	+/- 0%		140		
Long-range 325 PAX, 10,000 km	20-25	+50%	+10%		230	↓	Synfuels
1. Entry-Into-Service				0	100	200 300	

2. Cost per available seat kilometer

∕ €