

ENERGY Trials and deployment of fuel cells heat and power production

> Antonio Aguilo Rullan

PRD 2018 14 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Agenda

PROGRAMME REVIEW DAYS 2018 FUEL CELLS AND HYDROGEN JOINT UNDERTAKING 14 - 15 NOVEMBER, BRUSSELS

	TRIALS AND DEPLOYMENT OF FUEL CELL APPLICATION - TRANSPORT	NEXT GENERATION OF PRODUCTS - TRANSPORT	TRIALS AND DEPLOYMENT OF FUEL CELL APPLICATION - ENERGY	NEXT GENERATION OF PRODUCTS - ENERGY	HYDROGEN FOR SECTORIAL INTEGRATION	SUPPORT FOR MARKET UPTAKE	
:50 :10 :50 :10 :30	H2ME HAWL HYFIVE HYLIFT-EUROPE HYTRANSIT JIVE SWARM H2ME 2	AUTO-STACK CORE COBRA COSMHYC DIGIMAN Fit-4-AMandA H2REF HYCARUS INLINE INN-BALANCE INSPIRE MARANDA NANO-CAT SMARTCAT VOLUMETRIQ COMPASS Giantleap	ALKAMMONIA AUTORE CH2P CLEARGEN DEMO D2SERVICE DEMCOPEM-2MW DEMOSOFC ENE.FIELD ONSITE PACE PEMBEYOND POWER-UP STAGE-SOFC	Cell3Ditor DIAMOND ENDURANCE FLUIDCELL HEALTH-CODE HEATSTACK INSIGHT MATISSE NELLHI PROSOFC QSOFC SCORED 2:0 SECOND ACT SOSLEM INNO-SOFC	BIONICO BIOROBURplus Demo4Grid DON QUICHOTE Eco ELECTRA ELY40FF ELYntegration GrInHy H2Future HELMETH HPEM2GAS HyBalance HYDROSOL- PLANT HyGrid INSIDE MEGASTACK PECDEMO PECSYS QualyGridS SElySOs SOPHIA BIG HIT MEMPHYS	HYACINTH HYCORA HyLAW HYPACTOR HySEA HYTECHCYCLING KNOWHY NET-TOOLS SOCTESOA	h gas rator for

11:30 - 11: 11:50 - 12: 12:10 - 12: 12:30 - 12: 12:50 - 13:

13:10 - 13:

Trials and Deployment of Fuel Cell Application-Energy

Sustainable heat and power with fuel cells

Stationary - Total

262 M€ **76** Projects

Trials & Deployment

161 M€

30 Projects

Demonstrating low carbon and clean heat & power solutions 30 projects – 324 M€

* Other resources including private and national/regional funding

Demonstration portfolio

~ 25% of the energy in the EU is consumed in the household sector

From research to small scale field trials

Following early research small field trials supported the validation of the technology

NATIONAL PROJECTS

Germany taking the lead

Large scale national demonstration programme CALLUX in Germany

First large scale European wide field trial for domestic fuel cells Gaining experiences and increasing consumer trust

Over 1000 fuel cell systems installed across Europe

I the the

Track record of domestic heat and power fuel cell solutions created

EU PROJECTS

SOFTPACT 2011/2015 #65 installed

ene.field*

2012/2017 #1047 installed

Field trials results*

✓ Over 1000 units installed (PEM and SOFC) \checkmark 10 countries ✓ 5.5 million hours of operation ✓ 4.5 GWh of electricity produced ✓ 600 installers trained End-user satisfaction very good

*Source: 2017 FCH JU Data Collection and Analysis Exercise, see also https://goo.gl/GEqsoj and https://goo.gl/74Ffyc and Learnings from the ene.field project https://goo.gl/s3TmCZ

NATIONAL PROJECTS

CALLUX 2008/2015 **#500 installed**

Over 1000 fuel cell systems installed across Europe

2017 objectives achieved

On the road to mass market deployment

FCH JU PACE project supports OEMs for the development of the next generation of systems

On track and beyond targets...

68 systems with incremental improvements installed in PACE

KPI	MAWP 202 Objective	20 S	MAWP 2024 Objectives	MAWP 2030 Objectives
CAPEX, €/kW	10,000			
Lifetime (y)	13	\bigotimes		
Availability (%)	97	\bigcirc		
Durability stack (h)	50,000	\bigcirc		
Reliability (h)	50,000			
Elect. Ef.	35-60	\bigcirc		
Maintenance cost (EUR/kWh)	5			
Tolerated H2 content in NG (100)	100			

On track and beyond targets...but further improvements needed

68 systems with incremental improvements installed in PACE

KPI	MAWP 202 Objective	20 S	MAWP 2024 Objectives	MAWP 2030 Objectives
CAPEX, €/kW	10,000			
Lifetime (y)	13	\bigotimes		
Availability (%)	97			
Durability stack (h)	50,000	Ø		
Reliability (h)	50,000	R		
Elect. Ef.	35-60	\bigotimes		
Maintenance cost (EUR/kWh)	5			
Tolerated H2 content in NG (100)	100			

On the road to cost-competitiveness...

(1)...next generation systems: improved performances and designed for mass manufacturing

Source: Solid Power ©

Next generation systems being finalised and deployment in PACE will start end 2018

Source: Viessmann Group ©

On the road to cost-competitiveness...

On the road to cost-competitiveness...

...achieving competitive products with no support

KPI	MAWP 202 Objective	20 'S	MAWP 2024 Objectives	MAWP 2030 Objectives
CAPEX, €/kW	10,000	R	5,500	R&D 3,500
Lifetime (y)	13	Ø	14	15
Availability (%)	97	Ø	97	98
Durability stack (h)	50,000	Ø	Next gene	ration ₈ 0f00
Reliability (h)	50,000		75, cprodu	ICTS 100,000
Elect. Ef.	35-60	Ø	Mass manu	facturing
Maintenance cost (EUR/kWh)	5		3.5	2.5
Tolerated H2 content in NG (100)	100	R	100	100

SLIDO Question

Project ene.field deployed over 1,000 domestic fuel cell systems across homes in Europe. End users reported savings in the energy bill of up to

A1: 250 EUR per year

A2: 500 EUR per year

A3: 1000 EUR per year

A3: 1500 EUR per year

Use your smartphone; go to www.sli.do and insert the code #PRD2018

Demonstration portfolio

~ 13% of the energy in the EU is consumed in the commercial building and services sector

Fuel cells in commercial buildings and service sector

PoC being developed show links between energy and transport sectors

PoC

58 kW_e next generation FC system

Fuel cells in commercial buildings and service sector

Demonstrations in real installations have started Performing well....costs remain an issue...next generation of systems being prepared

SOFC

Biogas 174 kW_e SOFC plant in a Waste Water Treatment Plant in Torino, Italy 53 kWe in operation for 1,200 hours in 2017 only Elec. Effic. >50% Big potential for replication Cleaning of biogas too expensive -> new FCH JU research to decrease cost of biogas cleaning

23 systems in power range of 12 - 60 kW Commercial buildings Demonstrations to start soon

PoC

Demonstration portfolio

~ 25% of the energy in the EU is consumed in the industry sector

Industrial applications...greening big industry by using waste hydrogen

Exporting EU technology abroad...EU market conditions still not favourable

2 MW_e Fuel Cell in a Chloralkali plant, China

- H₂ by-product as fuel
- **Over 1 year operation** \bullet
- ~50% elec. eff. recorded

International Collaboration Starting point for emerging applications. e.g. maritime sector

1 MWe Fuel Cell in a Refinery, Martinique

- H₂ by-product as fuel
- Driven by high power generation costs in the island
- To be commissioned Q2 2019

Exporting EU fuel cell technology for industrial applications

Significant progress to datebut further work is needed to achieve our targets

A (2017)	MAWP 2020 Objectives	MAWP 2024 Objectives
00-3500 🧭	2000-3000	1500-2500
15	25	25
98	98	98
20-60	20-60	20-60
n/a	25,000	30,000
45	45	45
20-40	22-40	22-40

Next generation of multi MW size Fuel Cell Power Plants

Reducing costs further

Uses newly developed stacks, MEAs and BoP

Targets:

- FC elec. efficiency > 55%
- Lifetime > 20,000 h
- Fast response, grid services capability
- CAPEX < 1500 EUR/kW_e at yearly production rate of 25 MW_e.

П

PoC

Pilot plan to be built mid 2019

- 2018/2020
- 4.4M€ / 4.4M€

Demonstration portfolio

Delivering reliable power supply

Following successful PoC demos in real installation to start soon

Substituting dirty diesel solutions

PoC with promising results <7 kWe range:

Limited operational hours 50% % elec. effic. proven Stack durability 10,000 h System lifetimes 10 years claimed CAPEX 4000 EUR/kWe at mass production claimed

Demonstrations to follow as from next year for SOFC remote power applications

PoC

Containerised portable PEMFC gensets to be demonstrated soon

Fuel cells for micro cogeneration...a history of success

Strong European supply chain actors

27

Applications extend to commercial and industrial sectors

Supporting the decarbonisation of the building and industry sectors.....and contributing to clean air for cities

FC solutions displacing dirty diesel generation to be demonstrated soon

Antonio Aguilo-Rullan

Project officer Antonio.aguilo-rullan@fch.europa.eu

For futher information

www.fch.europa.eu

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

