ZEOCELL NANOSTRUCTURED ELECTROLYTE MEMBRANES BASED ON POLYMER-IONIC LIQUIDS-ZEOLITE COMPOSITES FOR HIGH TEMPERATURE PEM FUEL CELL (Project Nº: 209481) Dra. M.P. Pina INA / University of Zaragoza (Spain) mapina@unizar.es # 1. Project and Partnership Description - 1st Call Cooperation Programme_ENERGY.2007.1.1.1: Basic research for materials and processes for Polymer Electrolyte Membrane Fuel Cells (PEMFC) - Starting date: 1st January 2008. Duration: 36 months. - Collaborative project for small or medium scale focused project . - EU Budget : 1.917 k€, 7 beneficiaries ### 1. Project Goals ZEOCELL GOAL: DEVELOPMENT OF NANOSTRUCTURED ELECTROLYTE MEMBRANES FOR HIGH TEMPERATURE PEMFCs ### TECHNICAL TARGETS - ✓ High ionic conductivity (100 mS/cm at 150°C vs. 100 mS/cm exhibited by Nafion® at 80°C), - ✓ Low fuel cross over (five times lower than Nafion®) - ✓ Suitability for operating at temperatures between 130-200°C (the membrane materials are conceived to exhibit mechanical, thermal and chemical stability up to 200°C) - ✓ Durable (<1% of performance degradation during first 1000 hours working) - √ Reduced manufacturing costs (<400 EUR/m2) </p> ### A BASIC RESEARCH PROJECT ON MULTIFUNCTIONAL MATERIALS AND PROCESSES # **Project Approach** - Electrolyte performance (dehydration) - Durability (degradation/corrosion) - ❖ Fuel cross-over (Utility decrease) MILESTONES 2 & 3 ARCHITECTURES AND CONCEPTS **NOVEL** SYNERGIC COMBINATIONS FROM SINGLE MATERIALS **MILESTONE 1** # 1. Project Achievements: Milestones - FROM SINGLE MATERIALS: MILESTONE 1 - Proton Conductivity - **❖**Textural and surface properties - Chemical and Thermal Resistance - Manufacturing Costs # 1. Project Approach SYNERGICCOMBINATIONS Conduction Performance (T, RH) # 1. Project Approach <u>MICROPOROU</u>S 2. MEAs FROM CCM APPROACH NOVEL ARCHITECTURES AND MEMBRANE CONCEPTS: 1. SUPPORTED PROTIC IONIC LIQUID MEMBRANES ON POROUS PBI MATRIXES ## 1. Project Achievements: Milestones 2 & · 3 # 1. Technical Accomplishements | Formulation | Membrane
Architecture | e Conductivity | ce at 150°C
Fuel Cross Over
(methanol Permeability) | Transport Seled
H+/H₂ transport | ctivity
% Improv. | Durability
Cost | |--|--------------------------|--|---|------------------------------------|--------------------------|---| | 1 SINGLE COMPONENT SYSTEMS | | 350 mS/cm //y _{H20} = 0
400 mS/cm // y _{H20} = 0.05 | Methanol
⊗
H ₂
1.4 10 ⁻⁷ mol/cm.s.bar | 2.9 10³ kS.s.bar/mol | 10² baseline | 1000h //200ºC
325 mS/cm
184 €/m² //10⁴ m²/year
13 €/m² //2 106 m²/year | | COMPONENT
SYSTEMS
PBI+ImSF2808c | | 260 mS/cm // y _{H20} = 0.05 | Methanol
1.6 10 ⁻⁹ mol/cm.s.bar
H ₂
1.1 10 ⁻⁷ mol/cm.s.bar | 2.4 10 ³ kS.s.bar/mol | 10² baseline | 1000h //200ºC
260 mS/cm
253 €/m² //10⁴ m²/year
18 €/m² //2 106 m²/year | | COMPONENT
SYSTEMS
PBI+H ₃ PO ₄ +filler | | 73* mS/cm // y _{H20} = 0
(ETS-10)
223* mS/cm // y _{H20} = 0
(NaY-Im008b) | Methanol
7.2 10 ⁻¹⁰ mol/cm.s.bar | n.a. | n.a. | n.a.
296 €/m² //10⁴ m²/year
22 €/m² //2 10 ⁶ m²/year | | COMPONENT
SYSTEMS
PBI+H ₃ PO ₄ +Im008b+E | TS-10 | 49 mS/cm //y _{H20} = 0
55 mS/cm // y _{H20} = 0.05
100* mS/cm // y _{H20} = 0 | Methanol $6.810^{\text{-}10}\text{mol/cm.s.bar}$ H_2 $8.510^{\text{-}10}\text{mol/cm.s.bar}$ | 6.5 10 ⁴ kS.s.bar/mol | 10 ³ baseline | 500h //150ºC
15 mS/cm
322 €/m² //10⁴ m²/year
23 €/m² //2 10⁶ m²/year | | REFERENCE
Dense PBI | | 1.3mS/cm //y _{H20} = 0.05
64.8*mS/cm // y _{H20} = 0 | Methanol
9.2 10 ⁻¹¹ mol/cm.s.bar
H ₂
6.2 10 ⁻⁸ mol/cm.s.bar | 21 kS.s.bar/mol | Baseline | 150h //150ºC
4.3 mS/cm
280 €/m² //10⁴ m²/year
60 €/m² //2 106 m²/year | ### 2. Correlation of Zeocell with MAIP # Priority Research Areas Technological Development Demonstration Topics 2008-2013 Transport & Refuelling Public Awareness, Education Market Support (SME Promotion, Demand Side Measures, etc.) Demonstrations | | Vehicles &
Infrastructure | Low Carbon
Supply Chain | System Readiness
Manufacturability | Backup/UPS
Off-road H2 Vehicles
Micro/Portable FC | | | | | | |--|---|----------------------------|---------------------------------------|---|--|--|--|--|--| | | Technology, Sustainability & Socio-economic Assessment Framework, RCS and PNR | | | | | | | | | | | Research and Technological Development | | | | | | | | | | Stack & Processes & Periphery & Systems & Subsystems Modules Components Integration & Testin | | | | | | | | | | | | Components | New Technologies | Material & Design & D | egradation & Durability | | | | | | | Long-term and Breakthrough Orientated Research | | | | | | | | | | Stationary Power Early Markets Manufacturing, assembly and testing RT for micro FCs Improvement of components and their interaction Research and development on high quality production methods and processes for micro fuel cells in order to develop and implement reliable production methods and appropriate quality standards. | | Infrastructure | | Distribution | Generation & CHP | | | |-----|---|----------|--|---|--|--| | T05 | New catalysts and
membrane electrode
assemblies (MEA) | BR
RT | electrolyte membrane fuel cells- to further reduce the use of platinum in MEAs, increase performance and electro-chemical stability of the catalyst, identify potential, alternative low-cost catalysts observing suitable high quality manufacturing processes. Coordination with T02 required. | | | | | Г06 | New membranes
including for higher
temperatures | BR
RT | electrolyte membrane fuel
requirements, improve me
operating temperature und
quality manufacturing proc
robustness and life time to | of membranes for polymer
cells to reduce humidification
chanical stability and increase
ler observation of suitable high
esses, thereby enhancing
allow for further simplification
pordination with TO2 required. | | | Hydrogen Production & | Materials
development for
cells, stacks and
balance of plant
(BoP) | | Development of materials to improve performance in terms
of higher lifetime and lower degradation as well as
mechanical, thermal and electro-chemical stability of
single cells stacks and BoP components including
consideration of high quality manufacturability.
Coordination with 501 required. | |--|----------|---| | Next generation
stack and cell
designs | BR
RT | Long-term and break-through oriented research on novel
architectures for cell and stack design to provide step
change improvements over existing technology in terms of
performance, endurance, robustness and cost targets for
relevant applications. | | Improvement of | | Research and development to improve a.) The performance
of all individual components of the fuel cell system
including FC-unit, reformer, heat exchangers, fuel | RT management and power electronics and b.) The understanding and optimization of interaction between durability, target cost and developing the supply chain. components and mature stacks to meet application relevant functional performance criteria, including ### 2. Exploitation Plan for Zeocell HT-PEMFCs ### **MAIP Structure** # 2. Case Study for Zeocell HT-PEMFCs: Micro-scale Residential CHP market ### **CHP Market Assesment; 10% Share of the Market** | Application Micro-CHP | Units accumulated (2015) | Units accumulated Units accumula (2020) (2025) | | | |-----------------------|--------------------------|--|------------|--| | Total Units | 3.600.000 | 7.200.000 | 24.000.000 | | | HT-PEMFC Units | 360.000 | 720.000 | 2.400.000 | | ### 2 kW Stack ### **3-Component Zeocell Membranes** | Annual Production rate | 1 (Manual) | 1000 | 80000 | 130000 | 500000 | |-----------------------------|------------|------|-------|--------|--------| | Total stack cost €/kW) | 3530 | 637 | 230 | 191 | 134 | | ВОР | 2765 | 495 | 215 | 195 | 160 | | Total system cost (€) | 9825 | 1769 | 674 | 578 | 429 | | Total system cost
(€/kW) | 4912 | 884 | 337 | 289 | 214 | 2020 EU Target: 500 €/kW ### 3. ZEOCELL Impact # ZE**GC**3LL #### INTRODUCTION Project summary Project scope Project objectives List of beneficiaries #### PROJECT MANAGEMENT Contacts Time-sheets Amortisation of equipment Participant Portal - SESAM - FORCE #### RESTRICTED AREA Restricted area #### DISSEMINATION ACTIONS Brochure Poster Publicity actions Attendance to conferences, etc. Publications and meeting commun. Datent Nanostructured electrolyte membranes based on polymer/ionic liquids/zeolite composites for high temperature PEMFCs Round tables, forums, workshops, publicity, education, etc. Scientific conferences, direct dissemination, publications, meeting communications, presentations Patents, stakeholders, contacts Project ideas, proposals submitted, new research lines, training Networking and project durability # 4. Technology Transfer / Collaborations: International level- Ion-track technology on PBI • Inert Containers for Proton Conductors Micro-structured PBI films by Microtransfer Moulding Techniques - Inert Containers for Proton Conductors - Microstructured PBI for Lab on chip, Micro Total Analytical Systems, Flexible Structured Micro Reactors, Micro fuel cells. # 4. Technology Transfer / Collaborations: National Level - MEAs Optimization for Zeocell Membranes: - Polymeric Ionic Liquid Based Membranes • 3 component systems: Patent PCT/EP2010/064857; Priority date 05/10/2010 J Power Sources. 10.1016/j.jpowsour.2011.03.006 # 4. Technology Transfer / Collaborations: Regional Level • Development of flexible SU8 and PBI microstructures with advanced functionalities for Separation and Reaction Applications - Patterned MEA Prepared by Catalyst Coated Membranes for high temperature PEMFCs - Flexible Supports for Catalytic MicroReactors able to operate up to 400°C, extreme pH or oxidant-reducing conditions. # **ZEOCELL** NANOSTRUCTURED ELECTROLYTE MEMBRANES BASED ON POLYMER-IONIC LIQUIDS-ZEOLITE COMPOSITES FOR HIGH TEMPERATURE PEM FUEL CELL (Project Nº: 209481) Dra. M.P. Pina INA / University of Zaragoza (Spain) mapina@unizar.es