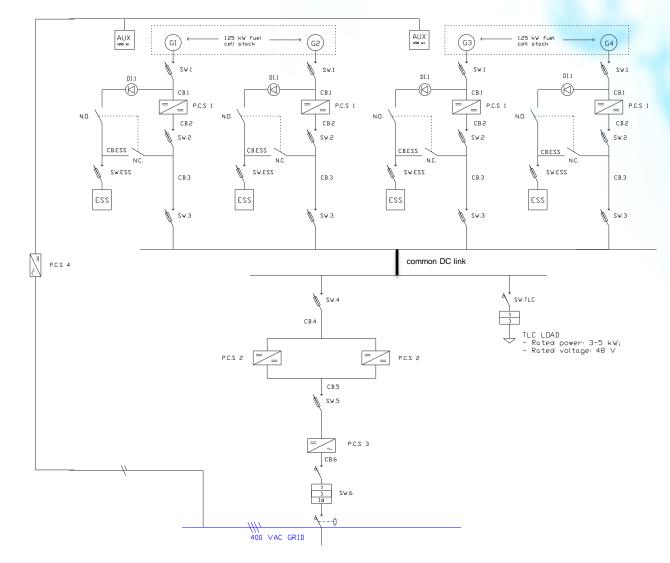
operation of a novel sofc-battery integrated hybrid system for telecommunication energy systems ONSITE (325325)

Erich Erdle efceco <u>www.onsite-project.eu</u>

PROJECT OVERVIEW

- SP1-JTI-FCH.2012.3.5
- System level proof of concept for stationary power and CHP fuel cell systems at a representative scale fuelled by natural gas or LPG
- Duration: 01 July 2013 30 June 2016
- Budget: 5,525,540 (FCH JU contribution 3,012,038)

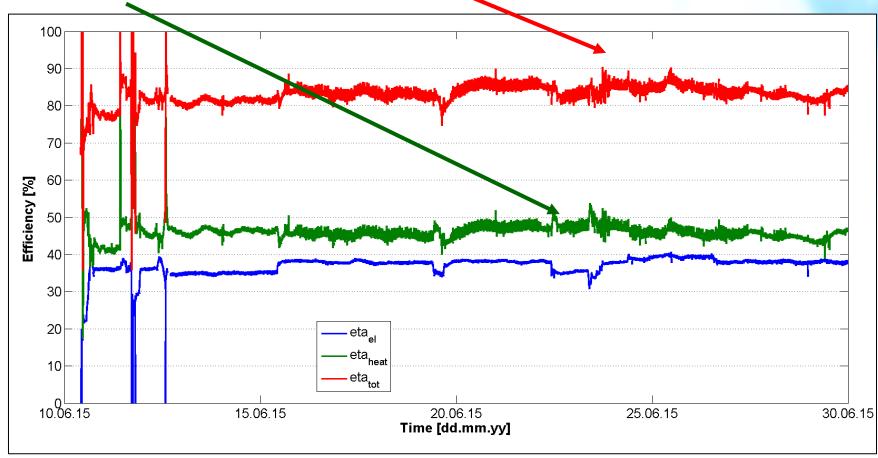
The overall objective of ONSITE is the construction and operation of a containerized system comprising a sofc/NaNiCl battery hybrid that generates more than 20 kW at high efficiency and economically competitive costs.


Stage of implementation 78% at present

PROJECT TARGETS AND ACHIEVEMENTS (1)

Programme objective/target	Project objective/target	Project achievements to-date	Expected final achievement
	MA	AIP	
system efficiency 55%+ (el.) or 85%+ (total)	system efficiency 55%+ (el.) or 85%+ (total)	system efficiency ~40% (el.); 86% (total)	system efficiency > 40% (el.); > 86% (total)
system cost 4,000 €/kW	< 4,000 €/kW	cost evaluation not yet finalized	< 4,000 €/kW
	A	Ρ	
n.a.	test of subsystems, P&ID, el. architecture	 system design sofc sub- system tested hybrid opera- tion shown 	proof of concept of sofc/NaNiCl battery hybrid for radio base stations and datacenters

PROJECT TARGETS AND ACHIEVEMENTS (2)


example of achievements: electrical architecture of system

PROJECT TARGETS AND ACHIEVEMENTS (3)

example of achievements: 500 hour long term test of a 2.5 kW sofc system

- total efficiency above 85%
- el. efficiency approaching 40%

RISKS AND MITIGATION (1)

- HTC abandoned the development of a (large cell area) 2.5 kW sofc stack development aiming at 10 kW stacks now
- HTC's CE-certification (outside of ONSITE) of the HoTboxTM system with 2 stacks of 1.25 kW each plus entire balance of plant took much longer and required more staff effort than anticipated; consequence: shortcomings for the R&D-activities in ONSITE
- the stack test and delivery of sofc-subsystems were substantially delayed
- mitigation:

the project had to engage the "fall back" strategy already defined in the DoW, i.e. to use 1.25 kW stacks (8 instead 4 with 2.5 kW)

RISKS AND MITIGATION (2)

- Ericsson (ERC) can no more provide the test laboratory site for testing resulting in another delay
- mitigation:
 - some ERC activities were transferred to CNR
 - CNR managed to engage a new Telecom operator (H3g) for tests under real world conditions
- due to this shortcomings a new objective (10 kW instead of 20 kW while keeping the system complexity [4 stacks] and a project extension by 9 months became necessary

			1	CL-10	2 0 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Corrage Volt	Dec.73	an 14	60.74	101-101	PLACE	PL-UN	10-14	100.14	Volume 1	14 Joe 14	(an. 15	Marys	?/		fil	li	n	9	m	or	th	S	lor.15	15. 15. 15. 15. 15. 15. 15. 15. 15. 15.	ur.s	110-12	12 12 12 12 12 12 12 12 12 12 12 12 12 1	Vol. 75	Dec.15	e 1.10	101-16	91-100 91-100
WP	#	WT description	ſ.	1 2			6	7	8	9 10	11	12 1	3 14	15	16 17	18	19 2	v0 21							l				22	23 24	25	26	27 25	29	30 31	32	33 34	35 36
Project management		WT1.1 - Technical & Scientific Management WT1.2 - Admin. Management	re	e	le [·]	fi	ne	•	V	N	P	3	(\$	st	a	:k	((de	eve	elo	op	m	e	nt	:)		ad	ar	ot	01	th	e	r	N	/P	S		
System design		WT2.1 - Requirements &Specifications WT2.2 - Overall System Design WT2.3 - Modelling																																				
SOFC subsystem development	3	WT3.1 - Stack development WT3.2 - Stack, reformer & afterburner therm. integration WT3.3 - Characterisation of 2.5 kW module WT3.4 - Control development of the 4 integrated FC units WT3.5 - Test and FAT of 10 kW SOFC module																																				
BoP Components	4	WT4.1 - Power Electronics WT4.2 - Energy Storage System WT4.3 - Thermal Management & Heat Recovery WT4.4 - Supervisor/Controller																															\pm					
Integrated CHP System	5	WT5.1 - System Integration WT5.2 - Operational Test WT5.3 - Packaging																																				
Field Test	6	WT6.1 - Test Plan & Infrastructure WT6.2 - Acceptance Tests & Qualification WT6.3 - Tests at telecommunications provider facilities WT6.4 - Evaluation																																		7		
Dissemination & techno-econ. Study	7	WT7.1 - Dissemination WT7.2 - Cost & Market Evaluation		1 2	3	4	5 6	7	8 !	9 10	11	12 1	3 14	15	16 17	18	19 2	0 21											22	23 24	25	26 2	27 21	29	30 31	32	33 34	35 36

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- ONSITE is informally in contact with the ene.field project via partner HTC
- efceco is a member of the advisory board of the stage sofc project
- IEN has collaboration with sunfire company
- CNR, efceco are collaborating on small microtubular sofc in SUAV project
- some partners (e.g. efceco) have broad and long ranging international contacts , primarily in the US

HORIZONTAL ACTIVITIES

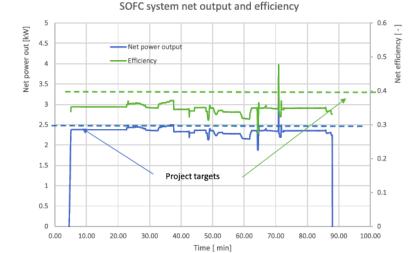
• n.a.

DISSEMINATION ACTIVITIES

some papers, a magazine article, a website and a Twitter account so far

- A magazine article published on International Innovation issue N. 173 both electronically and on hard copies
- Project website (<u>www.onsite-project.eu</u>)
- Twitter ONSITE project account

- "Multi-parametric model of a solid oxide fuel cell stack for plant-level simulations", J. Kupecki, M. Błesznowski, Institute of Power Engineering, Warsaw, Poland, 11th Symposium on Fuel Cell and Battery Modeling and Experimental Validation, Winterthur, Switzerland
- "Investigation of thermal cycling of a 1 kW-class planar sofc stack using fully physical quasi 1D model", Jakub Kupecki, Konrad Motylinski, Jaroslaw Milewski, Arkadiusz Szczesniak, Rafal Bernat &
- "Modeling of transitional states of a Molten salt battery as a part of cogenerative power system with solid oxide fuel cells", Jakub Kupecki, Konrad Motylinski, Nicola Zanon, Irene Dona, World Hydrogen Technologies Convention (WHTC2015), Sydney, October 11-14, 2015


EXPLOITATION PLAN/EXPECTED IMPACT

• ONSITE's system is the first of its kind taking advantage of the thermal coupling of an sofc and a NaNiCl battery (SNC battery)

- if successful ONSITE will widen the product range of FIAMM which is already cooperating the telecom industry
- the feature of energy storage (battery) might have impact on residential cogeneration systems

