IDEAL-Cell (FET-Energy) (grant agreement No 213389)

Alain THOREL ARMINES, France

Innovative dual membrane fuel cell (IDEAL-CELL)

Research area: ENERGY-2007-1.1-03 Innovative concepts for fuel cells

Start Date: 2008-01-01 - Duration: 48 months

Project Cost: 4.37 million euro - **Project Funding**: 3.31 million euro

•Consortium:

ARMINES (Paris, France) [Coordinator, materials science, shaping, math. morphology]

Université de Bourgogne (Dijon, France) [reactivity, cathode material, charact.]

CNR (Genova, Italy) [electroch. testing, wet shaping processes, modeling, interconnect]

DLR (Stuttgart, Germany) [plasma spraying, kinetic modeling, testing]

IEES-BAS (Sofia, Bulgaria) [impedance spectroscopy, dissemination]

AGH (Krakow, Poland) [oxidation of interconnect, hydrothermal analyses]

Naxagoras (Dijon, France) [SME: microwave sintering of nanopowders]

Visimbel (Stuttgart, Germany) [SME: CFD calculations]

Marion Technologies (Verniolle, France) [SME: powders supplier]

WP n°	WP titles	WP leaders	
1	Management	Dr. Alain Thorel (ARMINES)	
2	Oxygen electrode assembly development	Dr. Gilles Caboche (UB)	
3	Proton electrode assembly development	Dr. Alain Thorel (ARMINES)	
4	Dual cell realization	Dr. Massimo Viviani (CNR)	
5	Dual cell optimization and integration	Dr. Zeynep Ilhan (DLR)	
6	Dissemination and Management of knowledge	Dr. Daria Vladikova (BAS)	

Advisory Board

Dr Nikolaos Bonanos (Risoe, Denmark) Prof Paolo Spinelli (Politecnico Torino, Italy)

Interconnect Manager Dr Paolo Piccardo

Powder Manager Dr Jean-François Hochepied

Testing Manager Dr Antonio Barbucci **Modelling Manager** Dr Cristiano Nicolella

Materials Provider

SOFC and PCFC drawbacks: water at anode (SOFC) or cathode (PCFC)

<u>water at electrodes</u> =>

- dilution of fuel or oxidizer,
- reduced catalytic activity at the reaction sites,
- counter flow of gas to remove water, which acts against overall efficiency and heat management
- severe corrosive environment at the cell-interconnect interface (high temperature water steam + and H₂ or O₂) => need for sophisticated interconnects and protective layers;
- "open system" designs of electrodes for water evacuation => no easy operation under pressure;
- water and gases carrying heat out of the system.

Objectives:

- ✓ proof the concept,
- √ fabricate and optimize single dual cells,
- ✓ make a short stack

- no dilution of fuel
- no corrosion of electrodes
- no condensation of water on catalytic sites
- no counter-flow of gas needed
- each compartment has a single role to play and can be fully optimized
- electrode polarization expected to strongly diminish
- no "open" system, then pressure can be easily applied
- pure water and heat can be recovered easily
- can work as an HTE (pure H_2 and O_2 produced in separate chambers)

• ...

<u> </u>				
Month 0	Month 12	Month 24	Month 36	Month 48
И	/P2: cathode compartment			

• <u>Dissemination of IDEAL-Cell</u>

- 2 international workshops with 6 training courses
- website, animation, domain names, 4 patents
- about 60 papers, 15 conferences talks (+ workshops)
- 2 editorials, book chapters
- internal and external training on FC and H₂
- exchanges of students, PhD jurys...
- 3-chamber testing set-up (Real Life Tester[™])*

• ...

^{*} Contact CNR, our stand

4. Enhancing cooperation and future perspectives

<u>Technology Transfer / Collaborations</u>

- ✓ academic collaborations easy
- ✓ IDEAL-Cell not mature enough to raise interest within industrials (however with a level of performances that is <u>equivalent to that of a PCFC</u>, without its drawbacks)
- ✓ Technology transfer is therefore not relevant at this stage (except for some innovations i.e. new <u>3-atmosphere testers</u>, <u>algorithms</u> for microtomography <u>3D reconstruction</u> or <u>differential impedance</u>, can be transferred quickly)

• Project Future Perspectives

near

- ✓ Optimized IDEAL-Cells (wet shaping process) are under testing
- ✓ Full plasma sprayed metal support cells are being fabricated at DLR
- ✓ Gap between today's performances of IDEAL-Cell (lab samples, ≈ PCFC, ≈ 1/5 SOFC) and those that can be of interest for industrials (very new concept, to be compared to 40-50 years of research for SOFCs, 25 years for PCFCs!)
- \checkmark Need to fill this gap by:
 - 1. more scientific and technological research (already established consortium)

mid-term

- 2. industrial development (industries-JTI)
- ✓ A FET project on a HTE version of IDEAL-Cell is being proposed (project H_2GO)

you are most welcome to come and see us at our Ideal-Cell stand today and tomorrow

Charlemagne Bldg. First Floor, Stand J (ARMINES)