

HELMETH

"Integrated High-Temperature Electrolysis and Methanation for Effective Power to Gas Conversion"

Dr. Oliver Posdziech Sunfire GmbH

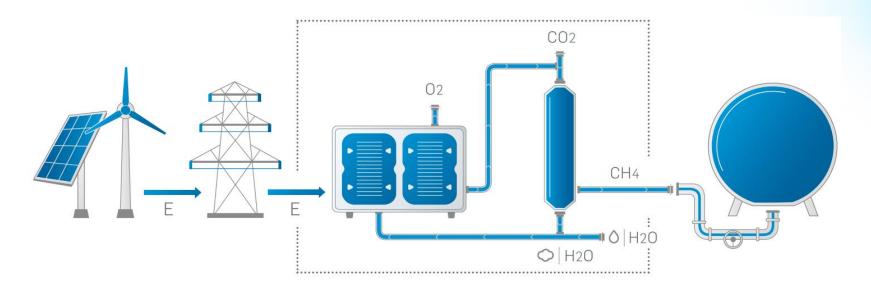
Coordinator: Prof. Dimosthenis Trimis (KIT) Email: dimosthenis.trimis@kit.edu

www.helmeth.eu

Programme Review Days 2016 Brussels, 21-22 November

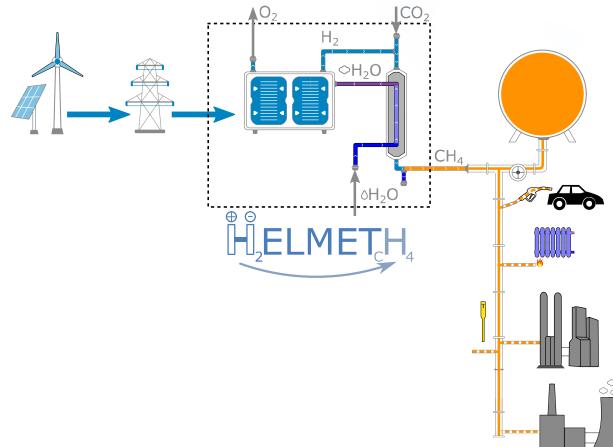
PROJECT OVERVIEW

Pr	oject Information
Call topic	New generation of high temperature electrolysers
Grant agreement number	621210
Application area (FP7)	Hydrogen production and distribution
Start date	01/04/2014
End date	31/03/2017
Total budget (€)	3,816,612
FCH JU contribution (€)	2,529,352
Other contribution (€)	-
Stage of implementation	86%
Partners	Karlsruhe Institute of Technology, Politecnico di Torino, Sunfire GmbH, European Research Institute of Catalysis A.I.S.B.L., Ethos Energy Italy, National Technical University of Athens, DVGW - German Technical and Scientific Association for Gas and Water

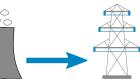

Objectives of HELMETH

Proof of concept of a highly efficient PtG technology

- Thermal integration of high temperature electrolysis with CO₂ methanation
- Technical feasibility of a conversion efficiency

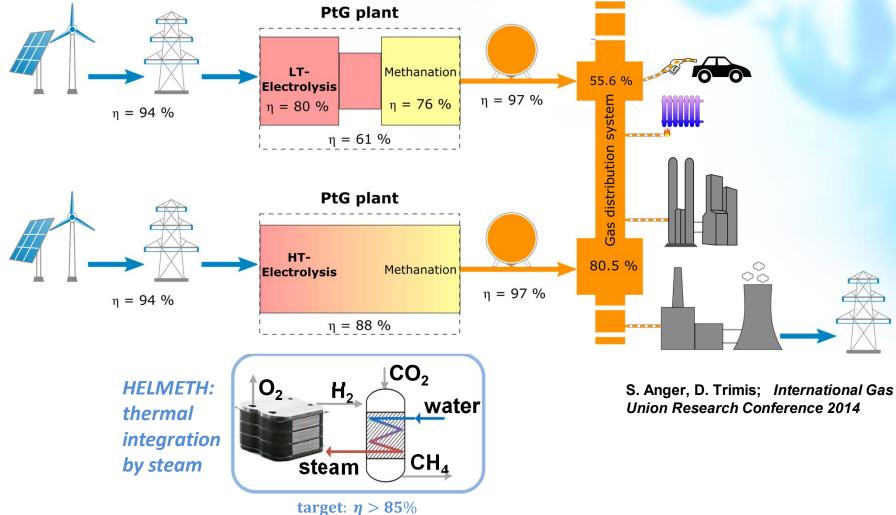

$$\gamma_{PtG} = \frac{\dot{n}_{CH_4} \cdot HHV_{CH_4}}{P_{el}} > 85\%$$

Objectives of HELMETH



- Elaboration of scenarios for an economic feasibility
- Demonstration that conversion of electricity into CH₄ by high-temperature electrolysis is a feasible option

Produced substitute natural gas is fully compatible with the existing natural gas grid and storage


Practically no capacity and duration limitations to store and utilize energy from fluctuating renewable energy sources

HELMETH vs state-of-the-art

Increased efficiency with the use of HT-electrolysis

 η_{PtG} based on HHV

HELMETH component targets

High temperature steam electrolysis:

- Pressure 15 bar (30 bar in future)
- Low degradation rates (< 0.5 % /1000 h for short stacks)
- Current density > 1 A/cm²

Methanation module

- Produced SNG corresponding to (future) NG grid standards
 - \rightarrow Multistep reactor concept
 - \rightarrow Elevated pressure
- Continuous steam generation
- Modulation from 20 to 100 % load & stand-by operation

Thermal integration of both modules

Project progress: steam electrolysis

- > World's first pressurized HT electrolyser module
- > 5.6 kW achieved at pressures up to 8 bar
- > Operation at 15 bar ongoing

PROJECT PROGRESS: Current Density

Achievement to-date % stage of implement.	0.4 A /cm ² 2	25%		50% 75% ton stack level on cell level			
Aspect addressed	Parameter (KPI)	Unit	SoA 2016	FCH Call topic	JU Targe 2017	ets 2020	
Current density	Current density at high temperature and pressurized condition	A/cm ²	-	> 1	-	-	

> State-of-the-Art: Pressurized operation only proven at cell and short stack level, sunfire is first institution to prove it on full-scale, thermally selfsustained stack.

PROJECT PROGRESS: Durability

Achievement to-date % stage of implement.	12 % /1000 h 2			75%		< 0.5 % /1000 h
Aspect	Parameter (KPI)	Unit	SoA	FCH JU Targets		
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Durability	Degradation rates - short stack tests	%/h	< 0.5	< 0.5	-	-
Durability	Degradation rates (module)	%/h		< 1	-	-

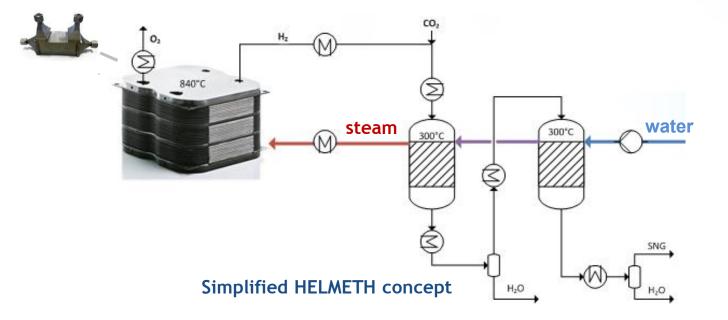
- Single cell test >23,000 h tested, degradation 0.5% / 1,000 h
- Short stack tests (10 cells) show degradation < 0.5% / 1,000 h</p>
- > Tests on stack level are currently ongoing

PROJECT PROGRESS: Efficiency

Achievement to-date % stage of implement.	60%		5% mulations	50% s, based on ex	75% xp. validated	Compon	85 % ents
Aspect addressed	Parame	eter (KPI)	Unit	SoA 2016	FCH Call topic	JU Targe 2017	ets 2020
Efficiency	Conversion efficienci electricit methane	es from	-	60 %*	85 %	-	-

- State-of-Art: The efficiency of a combination of low temperature electrolysis and a methanation would result in total conversion efficiencies around 60% in the best case
- Process simulations of HELMETH concept confirm efficiencies > 85 % for large scale plants based on the experimentally validated single component performances and realistic assumptions for the integration
- > Next step: Experimental validation by integrated HELMETH prototype

HELMETH prototype



Electrolysis module

- > Operating temperature of 800-850 ° C
- Sophisticated Direct Metal Laser
 Sintered (DMLS) heat exchangers
- > Up to 15 kW electrical input
- Pressurised operation up to 15 bar
 (30 bar in near future)

Methanation module

- Multistep methanation module with boiling water cooling.
- Thermal coupling with the SOEC by generated steam.
- Operational pressure of 15 bar in coupled mode and up to 30 bar at standalone tests

PROJECT SUMMARY

- SOEC short stack tests show degradation rates < 0.5 %/ 1000 h and feasibility of coelectrolysis. Pressurized SOEC module tests are currently ongoing.
- Multiple nickel based catalysts for the methanation developed & optimized. Lab tests confirm that SNG quality requirements are met with chosen concept. Assembling of methanation module is currently ongoing.
- Process simulation of HELMETH concept confirm efficiencies > 85 % for large scale plants based on realistic assumptions

NEXT STEPS: Completion of separate module tests and coupling of both modules

SOEC module (in operation)

Methanation module (assembling phase)

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interactions with projects funded under EU programmes

R&D on cell and stack technology

Demonstration of PtG technologies in a range of 300 kW - 1 MW

Interactions with national and international-level projects and initiatives

"Generation of liquid fuels from CO ₂ and H ₂ O by means of regenerative energy"	Funda
"Further Development of SOFC/SOEC stacks"	Develo
DemoSNG	Desi

Fundamentals of SOEC technology

Development of SOFC/SOEC stacks

Design of methanation module

DISSEMINATION ACTIVITIES					
Public deliverables	Conferences/Workshops				
Del. 2.2: Report on short stack testing	 1 organised by the project 				
 Del. 5.1: Initial LCA results on the "base case" HELMETH concept system 	 2 in which the project has participated (but not organised) 				
 Del. 5.3: Social and business requirements 	Project public pagewww.helmeth.eu				

Publications: 13

Synthesis, Characterization, and Activity Pattern of Ni–Al Hydrotalcite Catalysts in CO₂ Methanation, Industrial & Engineering Chemistry Research; 2016, 55, 8299–8308 Abate, S., Barbera, K., Giglio, E., Deorsola, F., Bensaid, S., Perathoner, S., Pirone, R., Centi, G.

Catalytic Performance of γ -Al₂O₃-ZrO₂-TiO₂-CeO₂ Composite Oxide Supported Ni-Based Catalysts for CO₂ Methanation, Industrial & Engineering Chemistry Research; 2016, 55, 4451-4460 Abate, S., Mebrahtu, C., Giglio, E., Deorsola, F., Bensaid, S., Perathoner, S., Pirone, R., Centi, G.

Patents: Patent applications ongoing (1 filed, 1 in preparation)

Thank You!

Speaker:

Coordinator: dimosthenis.trimis@kit.edu oliver.posdziech@sunfire.de