MULTIPLHY

Multi megawatt high-temperature electrolyser to generate green hydrogen for production of high-quality biofuels

Julie MOUGIN

CEA

https://multiplhy-project.eu

julie.mougin@cea.fr

#EUResearchDays #PRD2022 #CleanHydrogen

Project Overview

• Call year: 2019

 Call topic: FCH-02-2-2019: Multi megawatt high-temperature electrolyser for valorisation as energy vector in energy intensive industry

Project dates: 01/01/2020-31/12/2024

% stage of implementation 01/11/2022: 58%

Total project budget: 9 751 722.50 €

FCH JU max. contribution: 6 993 725.39 €

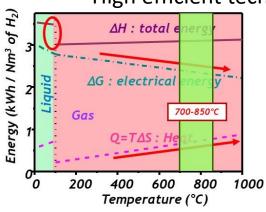
Other financial contribution: 2 757 997.11 € (industrial partners)

Partners: CEA (F), NESTE (FI, NL), SUNFIRE (D), PAUL WURTH (L), ENGIE (F)

Project Summary Main objectives

Global positioning vs international SoA

World largest HTE unit (by factor >3)


Goal:

- manufacturing, installation and integration of the world's first high-temperature electrolyser (HTE) system in multi-megawatt-scale, TRL8
- at a renewable products refinery located in Rotterdam / The Netherlands

1st HTE application for this market area

Benefits of HTE:

High efficient technology

$$H_2O (g) \rightarrow H_2 (g) + \frac{1}{2} O_2 (g)$$

 $\Delta H = \Delta G + T\Delta S \sim constant$ overall energy ΔH has to be provided either as

electric energy or as heat

Modular technology

EUROPEAN PARTNERSHIP

Low T: energy = 85% electricity / 15% heat High T: energy = 70% electricity, 30% heat

Project Summary Main objectives

Global positioning vs international SoA

CAPEX and OPEX in agreement with MAWP targets

World largest HTE unit (by factor >3)

Key figures:

- electrical rated nominal power of ~ 2.6 MW_{el,AC} (HTE and Hydrogen Processing Unit (HPU))
- Hydrogen production rate of ≥ 60 kg_{H2}/h (≥ 670 Nm³/h)
- Operation period of 16,000 h Longest demo phase
- leading to substantial GHG emission reductions

Technical objectives:

Best values in-field

- Electrolyzer electrical efficiency of up to 85%_{el,LHV}
- Electricity consumption @ nominal capacity: 39 kWh/kg_{H2}
- Availability: ≥ 98 %
- Production loss rate: ≤ 1.2% / 1000 h

Low degradation values measured at stack/system level for long periods

EUROPEAN PARTNERSHIP

Economic objectives:

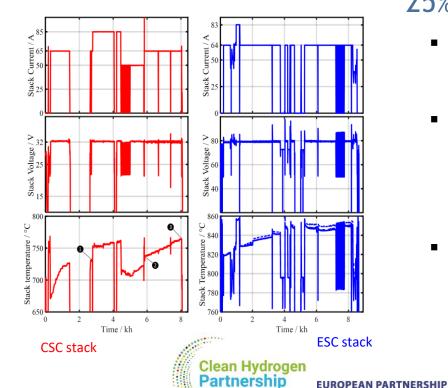
- Capital Cost: ≤ 2,400 € / (kgH2/d)
- Operations & Maintenance cost ≤ 120
 €/(kgH2/d)/year
- Techno-Economic analysis of HTE utilisation in refineries
- Pave the way for further upscaling step to a 100 MW scale

Societal objectives:

- Increased awareness of HTE as viable solution within Energy Intensive Industries (EII)
- Procurement strategy for RE
- Certification of the green H2 according to CertifHy's methodology

1st H₂ certificates for HTE technology

Stacks long term testing


Achievement to-date

SRIA SoA 2020
Degradation at
U_{TN} = 1.9%/1000h

25% 50%

- 2 stacks tested:
 - Cathode supported cells: 25 x 100 cm²
 - Electrolyte supported cells: 2 x 30 x 120 cm²

75%

- Operating strategy:
 - Thermoneutral voltage U_{TN}
 - Fixed current density = fixed H₂ production
 - Increase of T to compensate potential degradation
- Status and results
 - Successful long-term test of both stacks:
 - 6800 and 8200 h respectively
 - No H2 production loss with the operation strategy adopted for the test durations performed

No H2

production loss

Module manufacturing and installation

Achievement to-date

Gen1 133 kW -36 stacks module

Partnership

25%

50% 75%

Gen2 230 kW - 60 stacks module

- HTE modules manufacturing
 - 12 modules of 60 stacks, 230 kW each manufactured for MultiPLHY Project
- Status and results
 - Successful FAT of 5 modules to date
 - 65.7 Nm³/h H₂ production achieved per module
 - Very homogenous temperatures and voltages in stacks
 - 2 modules already installed in the refinery
 - Manufacturing of remaining MULTIPLHY modules in progress

FAT-Protocol
FAT-Protocol
F-08-036-00
HyLink Modul Gen2.1.1

Location
Dresder, Germany
Variation
HyLink Modul
Type of test
Gen2.1.1
Test according to
FAT-S021
Article no.
ASW-103732
Date
JA05. - 30.05.22
Revision status no.
A00
Test equipment
FAT-S021
Serial number
SYS-100357
Test procedure

1) Cold commissioning
2) Hatar up
3) Leakage test (#2)
4) Rated load
5) Maximum load
6) Leakage test (#2)
7) Cool down

Comments

Com

EUROPEAN PARTNERSHIP

Co-funded by the European Union

Hydrogen Processing Unit (HPU) manufacturing and installation

Achievement to-date

Grinhy 2.0 HPU 18 kg/h H2 12 bar, quality 3.8

25%

75%

MULTIPLHY HPU \geq 60 kg/h H₂, 30 bar, quality at least 3.0

50%

- Hydrogen buffer tank
- Hydrogen Compressor
- Hydrogen Dryer
- Air cooler
- Chiller
- Quality monitoring devise

Status and results

- All components manufactured
- Successful FAT
- Equipment delivered and installed in the refinery

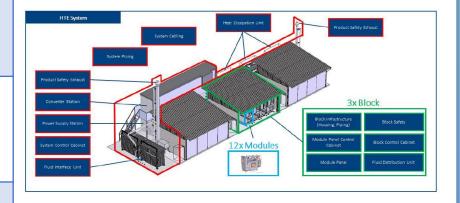
Site and demonstration preparation

N/A

Site and demo ready

25% 50% 75%

- Engineering and site preparation on-going for start-up in Q1/2023
- Service and maintenance concept defined
- Sourcing of renewable electricity is being planned
- Work on Guarantees of Origin (GO) for H₂ in relation with CERTIFHY and local Dutch system of GO
- Draft methodology for GHG avoidance adopted within CertifHy WG 2 (on production) & validation by WG1 expected end 2022



Risks, Challenges and Lessons Learned

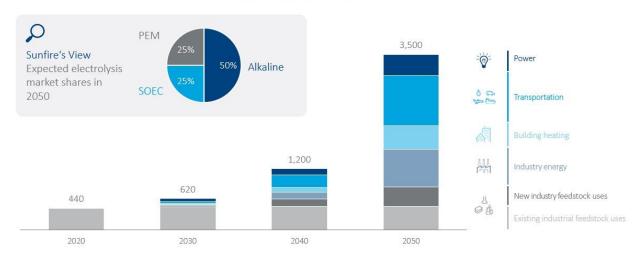
		Measures taken
Risks	Delay due to longer than planned manufacturing duration + extended delivery times of components and material (COVID effect)	Contingency plan in place: manufacture, ship, install 2 modules at NESTE in Summer 2022. Installation and commission of the 10 other modules beginning of 2023.
	Implementation of a new technology in new scale leads to technology risk which needs to be mitigated	Detailed risk management in place, accurate planning of installation and commissioning phase to ensure smooth start-up.
Challenges	Procurement of a 3rd party stack for benchmark Contact with several potential suppliers, which unfortunately failed	Test of Sunfire new stack design in replacement

Exploitation Plan/Expected Impact

Exploitation

Projects partners on the whole value chain: each having its own stone

Impact


Preliminary market analysis performed Sales forecast performed for each individual components

MARKET OVERVIEW

EUROPEAN PARTNERSHIP

Hydrogen demand will increase across all industries

Global hydrogen demand [GW]1)

Sources: FCH JU; McKinsey & Company 1) Assuming > 8,000 full load hours and 50 kWh/kg

Co-funded by the European Union

Dissemination/communication

Activities

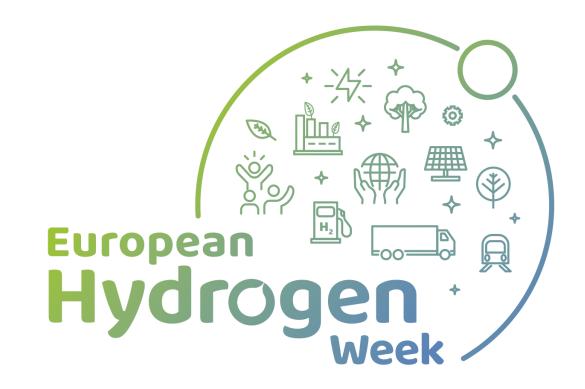
Website: https://multiplhy-

project.eu

of visitors: 19474 (10 Oct 2022)

Newsletters and leaflets

3D motion design to present MULTIPLHY concept



Co-funded by the European Union

Presentations at workshops/conferences Article in EFCF2022

