Fuel cells and hydrogen Joint undertaking

Low Temperature Solid Oxide Fuel Cells for micro-CHP Applications (256694)

http://www.fch-ju.eu/

The LOTUS consortium

LOTUS is:

the development, construction and testing of a μCHP system based on low temperature SOFC stack technology

Duration: 3 years (1 january 2011- 31 december 2013) Budget: k€ 2.955 \rightarrow FCH- Contribution: k€ 1.632

Partner

- HyGear Fuel Cell systems (NL)
- SOFCPower (I)
- Fraunhofer IKTS (D)
- Domel (Slo)
- University of Perugia (I)
- European Commission/ JRC (B)
- Associated partner: Vaillant (D)

Main task in Project

Coordinator, system design and construction SOFC stack development System modeling

Gas- Air system development

- User profile input, SOFC single cell testing
- SOFC stack testing, test harmonization

Planning and Status

WP1

Task 1.1: R&D ManagementTask 1.2: Dissemination and communication ManagementTask 1.3: Administrative Management

WP2

Task 2.1 Development single cells Task 2.2. Develop Short Stack Task 2.3. Develop and test stacks to 1 kWe

WP3

Task 3.1 SRD development Task 3.2 System modeling Task 3.3 Control logic development

WP4

Task 4.1 System design Task 4.2 Develop De-Sulfurisation Task 4.3 Develop heat exchangers Task 4.4 Develop reactors Task 4.5 Develop GAD Task 4.6 Develop control strategy

WP5

Task 5.1 Procurement partsTask 5.2 System assemblyTask 5.3 Build controls

WP6

Task 6.1 Factory acceptance test + fixes Task 6.2 Test system

- Development of hardware is making good progress:
- More time taken for developments: no impact on overall schedule or developments from partners.

Project achievements(1)

• The LOTUS project is well on track:

- Mid term review 24 October 2012
- Stack long term testing 4 month behind (M 17(May 2012) → M 21 (Sep 2012)
- Dynamic system modeling 6 month behind (M18 (June 2012) → M24 (Dec 2013)
- These delays cause no issues with in the LOTUS consortium or the overall planning, as tasks are not on critical path. Data are available, reporting to be done.
- Main events to come:
 - Stack delivery to HFCS Jan 2013 (M 24)
 - Working prototype June 2013 (M 30)

Project achievements(2)

WP2: Cell performances

- Activity focused on new material for improved performances at low temperature, developing mainly cathode and barrier layer;
- VI and durability tests performed, with performance improvements of approx. 75% in comparison to SoA cell;
- At testing level, a round robin test between SOFCpower and FClab facilities was carried out, showing good reproducibility (<10% difference, due to temperature differences)

Project achievements(3)

WP2: Short Stack performances

Test conditions:

T _{air out} = 600 - 750 C Fuel: H₂/N₂ 60/40 (H₂ = 1.44 NL/min) Air: λ =3

Project achievements(4)

• WP3: System Design & Modeling (IKTS)

- System Requirements Document (SRD) was compiled at joint workshop in 06/2011 (D3.1, M3)
 - → Basis for system design and process layout
- 0-D SOFC stack model was parameterized using ASC measurement data and development goals from WP2
 - → Basis for system performance estimation
- System design and preliminary process layout calculation was finalized in 09/2011 (D3.2, D3.3, M4)
 - → Basis for component design and system engineering
- Ongoing work for dynamic process modeling and control logic development:
 - Available Modelica-libraries evaluated for LOTUS process modeling → "ThermoPower"-Library was chosen as development basis for dynamic process model
 - Available Modelica-simulators evaluated for LOTUS model implementation → "Dymola" was qualified
 - Base classes for dynamic process model compiled and tested → *First model versions of all required system components are available*
 - Preliminary investigations of Software State Machines in Dymola → Principle approach to modelbased control logic development was prepared

Project achievements(5)

- Dual fuel burner for anode tail gas and natural gas
 - Two step design approach: dismountable system for easy hardware changes and testing. Low cost design for production.
 - First design iteration tested and working on both H₂ and CH₄
 - One burner strategy possible: Cost reduction

Project achievements(6)

- Integrated burner and steam reformer
 - Commercial precious metal catalyst
 - Sizing limited by heat transfer, not activity of catalyst
 - Detailed design of first iteration ready (height = 40 cm)
- Steam generator/ steam gas mixer design ready
 - Component is built
 - Testing in November 2012 (M 23)
 - Time available for Second iteration, if required

Project achievements(7)

- Double staged impeller blower by Domel, to improve lifetime
 - Built and tested at Domel, prototype is ready for delivery

 Single blower strategy → lower number of components to improve reliability and cost

- LOTUS is part of Application area AA3: micro-CHP residential, natural gas based
 - Electrical efficiency > 45%
 - LOTUS Modeling data: 43%. Data available Y3.
 - CHP efficiency > 80%
 - LOTUS Modeling data: 80% : design for very low heat loss
 - System cost: €5000 / 1kWe in 2020

LOTUS cost prediction: meeting the MAIP

Module/component	Cost estimate	Source
	(>10.000 pieces)	
Stack	€ 520	Supplier info(SP)
Air preheater	€ 650	Supplier info
Burner/reformer assy (incl catalyst)	€ 910	Assumption
Blower	€ 130	Supplier info
Controls	€ 195	Assumption
CHP Hex	€ 130	Assumption
Steam generator	€ 260	Assumption
Inverter	€ 975	PV information
BOP	€ 650	Assumption
Enclosure	€ 325	Assumption
Total	€ 4.745	

• Cost of € 5,000/kW

Reduction of SOFC temperature to 650° C

- Rational: Use of less expensive materials; Longer life-time
- Status: single cell and short stack tests are onging with good results so far

- Simplify system design

- Rational: Less components lowers costs and increases reliability; Combining functions within same hardware
- Status: New system design model made combining functions: e.g. 1 blower, 1 burner for start-up and peak burning, combine steam generator with gas mixing

- Use commercial available components

- Rational: Use of less expensive materials: proven reliability and long life-time
- Status: several components (Blower, heat exchanger) sourced and in house

• Develop system for real market conditions

- LOTUS will deliver a prototype unit
- BUT, is based on Voice-of-customer demands and requirements
 - System Requirement Document finished
- Input from Vaillant GmbH
- Using user profiles North and South Europe
 - Vaillant GmbH
 - University of Perugia

3. Cross-cutting issues

• Training and Education within LOTUS

University of Perugia makes students familiar with fuel cells and their applications

• Safety, Regulations, Codes and Standards

System will be designed to meet CE criteria, which includes creation of a HAZOP document and a FMEA

Harmonization of testplans for single cells, stacks and systems

• Dissemination and public awareness

LOTUS website

> Partners are taking part in many other international projects

Partners are members of many (inter)national organizations (IPHE, IEA HIA, EHA, etc)

4. Enhancing cooperation and future perspectives

- Technology transfer/collaborations
 - Vaillant GmbH. as associated partner provides input on the customer specifications
 - National collaborations in all partner countries on Fuel Cell Technology
 - Specific national collaboration on SOFC CHP:
 - Italy: Efeso
 - Interactions with other EU SOFC projects: (ADEL), DESIGN...
 - Technology improvement in HyGear, DOMEL, SOFCpower products
 - Component reliability improvements

4. Enhancing cooperation and future perspectives

- Collaboration with other European funded SOFC projects: ADEL, SUAV, Design
- LOTUS partners are interested in follow up demonstration project for field trials.
 - Add more end-user partners