

ECO Efficient Co-Electrolyser for Efficient Renewable Energy Storage

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Anke Hagen

DTU

http://www.eco-soec-project.eu/

anke@dtu.dk

W5H62991

PROJECT OVERIVEW

- **Call year: 2015**
- Call topic: H2020-JTI-FCH-2015-1, Development of co-electrolysis using CO₂ and water
- **Project dates: 01 May 2016 30 April 2019**
- % stage of implementation 01/11/2019: 100 %
- **Total project budget: 3,239,138.75 €**
- **FCH JU max. contribution: 2,500,513.75 €**
- Other financial contribution: 738,625 €
- Energy Research, Htceramix/SolidPower, LABORELEC/ENGIE, Enagás, VDZ gGmbH

European Institute for Energy Research, École polytechnique fédérale de Lausanne, Catalonia Institute for

PROJECT SUMMARY

ECo: Efficient Co-Electrolyser for Efficient Renewable Energy Storage

- > Challenge: Increasing shares of fluctuating electricity production from renewable sources to achieve the EU ambition of reducing greenhouse gas emissions by 80-95% by 2050. Storage needed. > Overall objective: Develop and validate a highly efficient co-electrolysis process for conversion of excess renewable electricity into distributable and storable hydrocarbons via simultaneous
- electrolysis of steam and CO₂ through SOEC (Solid Oxide Electrolysis Cells)
- > Improve SOEC for operation at ~100 °C lower temperatures than State-of-the-Art (SoA)
- > Achieve durability under realistic co-electrolysis conditions with degradation rates below 1%/1000 h at stack level
- > Validation at system level
- \succ Design a **SOE plant** and integrate into CO₂ emitting plants for techno-economic & life cycle analysis

PROJECT PROGRESS/ACTIONS – Improve SOEC vs. SoA

Achievement to-date

Area Specific resistance at 750 °C (ASR) 0.4 Ohm cm^2

PROJECT PROGRESS/ACTIONS – Improve SOEC vs. SoA

longer lifetimes.

✓ The decrease of the area specific resistance (ASR) of SOEC allows for decreasing the operating temperature by 50-100 °C, which decreases thermally activated degradation processes thereby leading to

PROJECT PROGRESS/ACTIONS – Improve SOEC vs. SoA

longer lifetimes.

✓ The decrease of the area specific resistance (ASR) of SOEC allows for decreasing the operating temperature by 50-100 °C, which decreases thermally activated degradation processes thereby leading to

PROJECT PROGRESS/ACTIONS – Durability

✓ 0 - <1%/1000 h degradation in co-SOEC mode on cell and stack level under conditions relevant for coupling with fluctuating electricity input from renewable sources

PROJECT PROGRESS/ACTIONS – Durability

✓ 0 - <1%/1000 h degradation in co-SOEC mode on cell and stack level under conditions relevant for coupling with fluctuating electricity input from renewable sources

Achievement to-date

Achievement to-date

Plant model designed

- SOE and methanation (internal & external)
- steam or co-electrolysis
- considering thermodynamic & electrochemical parameters
- heat integration

✓ Trade off between high methane yield (up to ~30 vol% at stack outlet) & system efficiency (~90%) Co-electrolysis offers better system-level heat integration achieving higher system efficiency

Achievement to-date

Integration study with CO₂ emitting plants:

- Cement plant
- **Biomass gasification**
- **Biogas plant**

Achievement to-date

Integration study with CO₂ emitting plants:

- Cement plant
- Biomass gasification
- Biogas plant

12

Achievement to-date

Integration study with CO₂ emitting plants:

- Cement plant •
- **Biomass gasification**
- Biogas plant

In all cases, access to cheap and CO₂-lean electricity is the key to market potential

The share of renewables in the electricity input determines the reduction of global warming potential

13

Risks and Challenges

oxygen electrode

solid oxide electrolyte

fuel electrode

SOEC

SOEC Plant - Illustration

Risks and Challenges

Co-SOEC (durability) tests are technically enormously challenging, particularly under relevant conditions ECo involved leading groups in testing of SOE (SOFC), who managed to carry out a comprehensive test matrix

Cell version/Test type	SoA	ECo 1	ECo 2	ECo 3	ECo 4
Steam SOEC	\checkmark	\checkmark	✓	\checkmark	\checkmark
Co-SOEC	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Constant operation	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Dynamic operation	\checkmark		\checkmark		\checkmark
Effect of	\checkmark				
contaminants					
Atmospheric	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
pressure					
High pressure	\checkmark		\checkmark		
Cell	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Stack	\checkmark	\checkmark	\checkmark	\checkmark	
System	\checkmark		\checkmark	\checkmark	

experimental data exact about Lack ot composition of relevant CO₂ streams ✓ Additional analysis campaign was performed on two Post-Combustion CO₂ capture facilities

Improve SoA cells is a difficult undertaking ✓ ECo pursued improvement of different electrodes with different strategies materials & structuring - to succeed.

Open access publication requirement, ECo partners were among the first movers meeting serious obstacles **S** Costly realisation

Communications Activities

Communications Activities

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

- SOE technology providers: Cost reduction of SOE technology through improved performance & durability based on SoA cells
- Economic potential:
 - Cement plant with oxy combustion CO₂ capture: Supply of the needed O_2 . Formed methane substitutes part of the fossil fuel input for cement production.
 - Biomass gasification plant: Boost of the methane production through using the CO₂ biproduct.
 - Biogas plant for methane production: Methane output is doubled through conversion of the inherent CO₂ in biogas into methane.

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

- SOE technology providers: Cost reduction of SOE The improved electrolysis cells allow for 100 °C lower technology through improved performance & operating temperature with the same gas output as durability based on SoA cells compared to SoA.
- Economic potential:
 - Durability of cells and stacks in co-SOE operation • Cement plant with oxy combustion CO₂ capture: threshold reached a value needed Supply of the needed O₂. Formed methane commercialization (degradation rates <1% /1000 h) substitutes part of the fossil fuel input for including realistic operation conditions such as "windcement production. profile" electricity and high-pressure operation.
 - Biomass gasification plant: Boost of the System validation with improved ECo cells reaching methane production through using the CO₂ bihigh electrolysis efficiencies of 94%. product.
 - For the first time delivery of a co-SOE plant design Biogas plant for methane production: Methane including renewable electricity input and methane output is doubled through conversion of the output, allowing for definition of optimum parameters $\frac{1}{2}$ in biogas into methane. to achieve high efficiencies, gas output, etc.

Impact

19

ECO Efficient Co-Electrolyser for Efficient Renewable Energy Storage

Programme Review Days 2019 Brussels, 19-20 November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Anke Hagen DTU

Coordinator: anke@dtu.dk

W5H62991

