NET-Tools

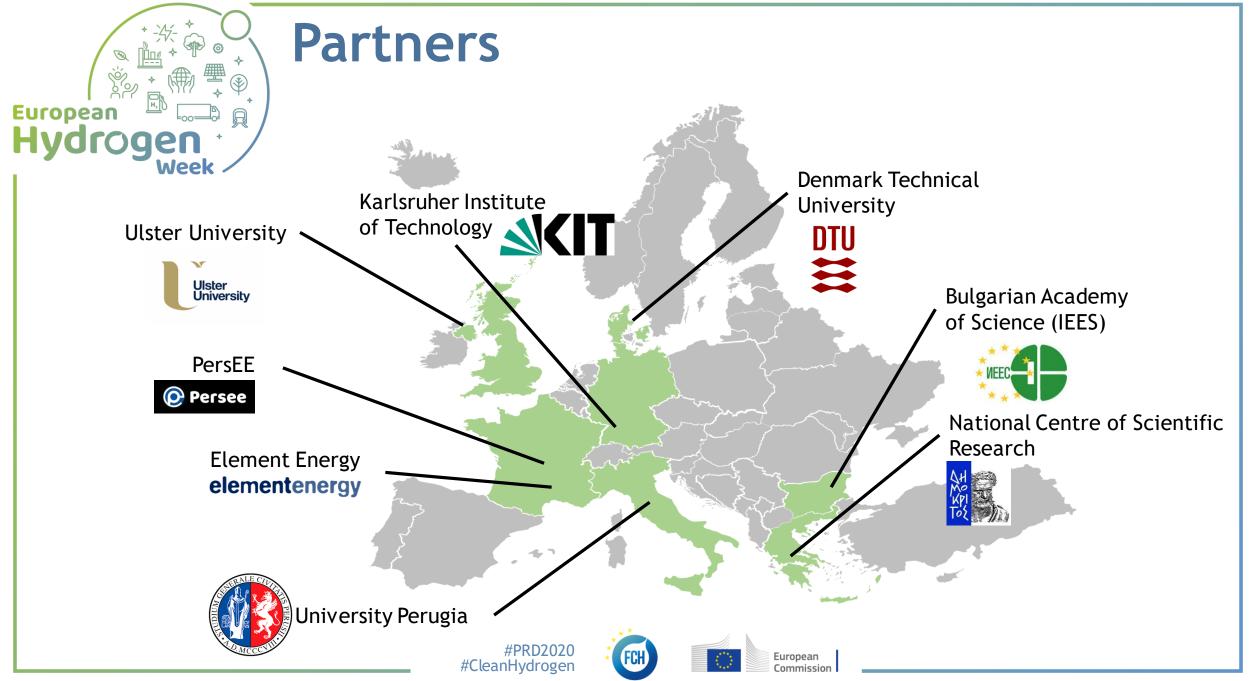
Novel Education and Training Tools based on digital Applications related to Hydrogen and Fuel Cell Technology

Olaf Jedicke

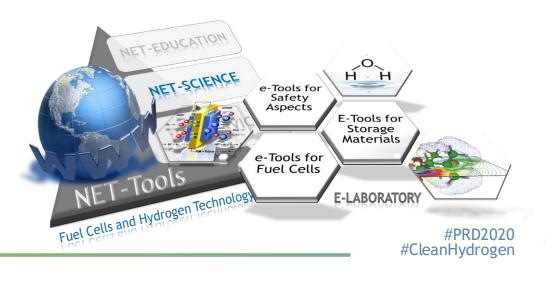
Karlsruher Institute of Technology

www.h2fc-net.eu

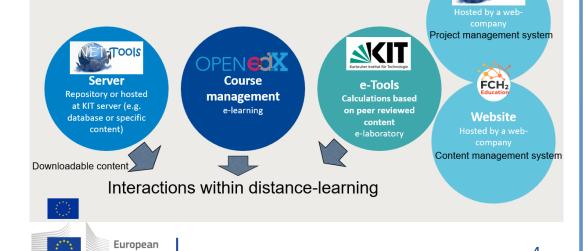
olaf.jedicke@kit.edu


Project Overview

- Call year: [2016]
- Call topic: [H2020-JTI-FCH-2016-1; FCH-04-1-2016 Novel Education and Training Tools]
- Project dates: [01.03.2017 (30.11.2020) by amendment]
- % stage of implementation 01/11/2019: [75 %]
- Total project budget: [1.596.007,50 €]
- FCH JU max. contribution: [1.596.007,50 €]
- Other financial contribution: [none €]
- Partners: [next slide]


Project Summary

NET-Tools is developing an e-platform, containing an e-laboratory and e-learning part, interconnected by educational content, to support education and training in FCH-related topics. The project is aiming at both, broad university education and dedicated additional and continuing education within various industrial sectors.


NET-Tools guarantees different perspectives of the user (learner, teacher, developer, provider) with free access to the e-platform.

NET-Tools aims to insure the quality of provided e-learning materials and free access

to the e-platform (by registration)

Project Summary

The technical implementation of e-laboratory and e-learning platform, the development and provision of useable educational content (MOOCs in different design) and e-tools within the e-laboratory and e-laboratory based on the <u>main objectives</u>:

- Technical implementation of the e-platform its handling, maintenance and features (MAWP, NIP)
- Separate implementation of e-laboratory and programing of useable e-tools for educational and engineering aspects (MAWP, NIP)
- Separate implementation of e-learning materials (MOOCs) compiled in short courses according FCH-relevant topics (MAWP addendum 2018)

The actual <u>international state-of the art</u> (only similar approach visible in US) NET-Tools could get into a lead position as e-platform for educational aspects within Europe. Main dependence is the willingness of cooperation and competing behavior of others.

<u>Application and market areas</u> are "education in general", means academic as well as industrial sectors to educate students, technicians, engineers but also providing overview knowledge to politicians, decision makers and administrative stuff

Project Progress/Actions - Aspects (1)

No KPI

Technical Implementation e-infrastructure


100%

25%

50%

75%

- Technical Implementation of Open Source Based e-infrastructure
 - Server based solution for the e-laboratory, practical maintenance and software updates
 - Implementation of e-learning via service provider open-EdX and MOOC Agency
 - Interconnection of both, e-laboratory and e-learning, through e-learning content (tasks and dedicated problems tailored to the application of the e-tools
- **NET-Tools website** runs as linchpin to connect to the e-learning platform and e-laboratory and to provide news, guidelines and instructions
- Implementation of e-learning platform (LMS) at open EdX
- Implementation of platform to develop and provide own e-learning content
- Implementation of digital e-laboratory workspace (distinguished between e-science and e-engineering)
- Reinstallation of databases at NET-Tools website, e.g. SUSANA database

Project Progress/Actions - Aspects (2)

0 e-tools 38 e-tools

Development of e-tools to the e-laboratory

100%

25%

50%

75%

- Development of e-tools to the e-laboratory
- e-laboratory distinguished in:
 - e-engineering tools (for practical teaching and learning and technical pre-evaluation)

#CleanHvdrogen

- e-science tools (to support research e.g. modelling and simulation)
- Subdivision of e-tools based on relevant FCH themes e.g.
 - Tools concerning safety themes
 - Tools concerning electrochemical calculations
 - Tools concerning fuel cells (installation in simple private areas)
 - Tools concerning storage and thermodynamic behaviour of hydrogen
- Consolidation of existing e-tools and e-knowledge
- Quality assurance and IPR
- Engagement with and gaining traction from the wide FCH community

FCH

SORT BY CATEGORY

- Select All
- fc integrated into chp
- safety
- property
- electrochemistry
- modeling
- thermodynamics
- ✓ storage-separation
- renewable energy systems
- fuel cells
- production

Graphic material

300

New calculation

Actions

Show description

Units

 P_{tank} (Tank Pressure)

 T_{tank} (Tank Temperature)

 P_{amb} (Ambient Pressure)

 T_{amb} (Ambient Temperature)

 $oldsymbol{d_{noz}}$ (Nozzle diameter)

 ho_{tank} (Tank density)

 s_{tank} (Tank entropy)

 P_{noz} (Nozzle Pressure)

 T_{noz} (Nozzle Temperature)

 ρ_{noz} (Nozzle density)

 s_{noz} (Nozzle entropy)

 W_{noz} (Nozzle velocity)

 G_{noz} (Nozzle mass flux)

 P_{fnoz} (Fict Nozzle Pressure)

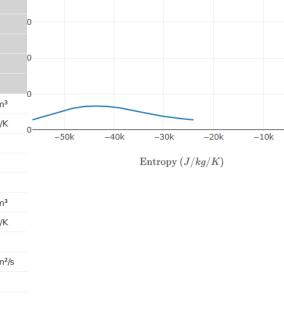
 T_{fnoz} (Fict Nozzle Temperature)

 ho_{fnoz} (Fict Nozzle density)

 $oldsymbol{s_{fnoz}}$ (Fict Nozzle entropy)

 W_{fnoz} (Fict Nozzle velocity)

 G_{fnoz} (Fict Nozzle mass flux)


•

 d_{fnoz} (Fict nozzle diameter)

 \dot{m} (Mass flow rate)

Pa	~
K	~
Pa	~
K	~
m	~
kg/m³	~
J/kg/K	~
Pa	~
K	~
kg/m³	~
J/kg/K	~
m/s	~
kg/m²/s	~
Pa	~
K	~
kg/m³	~
J/kg/K	~
m/s	~
kg/m²/s	~
m	
kg/s	~

Substance	ID_{subst}	1	c
Tank Pressure	P_{tank}	2e+7	Pa
Tank Temperature	T_{tank}	298.15	K
Tank vapor quality	x_{tank}	1	
Ambient Pressure	P_{amb}	1.01325e+5	Pa 0
Ambient Temperature	T_{amb}	298.15	K
Nozzle diameter	d_{noz}	0.004	m
Fictitious nozzle model	$Model_{fnoz}$	1	
Tank density	ρ_{tank}	14.482	kg/m³
Tank entropy	s_{tank}	-21948.3	J/kg/K
Nozzle Pressure	P_{noz}	1.01155e+7	Pa
Nozzle Temperature	T_{noz}	244.429	K
Nozzle vapor quality	x_{noz}	1	
Nozzle density	$ ho_{noz}$	9.38705	kg/m³
Nozzle entropy	s_{noz}	-21948.3	J/kg/K
Nozzle velocity	W_{noz}	1290.38	m/s
Nozzle mass flux	G_{noz}	12112.9	kg/m²/s
Fict Nozzle Pressure	P_{fnoz}	1.01325e+5	Pa
Fict Nozzle Temperature	T_{fnoz}	298.15	K
Fict Nozzle vapor quality	x_{fnoz}	1	
Fict Nozzle density	$ ho_{fnoz}$	0.082353	kg/m³
Fict Nozzle entropy	s_{fnoz}	0	J/kg/K

— Saturation

--- ExpansionPath

Project Progress/Actions - Aspects (3)

0 courses Achievement to-date 4 courses

Development of e-learning Materials

85%

25%

50%

75%

- Development of e-learning Materials
- e-learning materials compiled under different basic courses:
 - Use of Hydrogen (dedicated to Fuel Cells only)
 - Hydrogen Production (all methods including storage)
 - Hydrogen Handling (transportation etc.)
- Consolidation of existing e-education and e-knowledge
 - Demand on providing e-learning materials (MOOCs)
 - Quality assurance and IPR
 - Engagements of external participants and users

Solid State Hydrogen fch2edu Storage 2nd-Tech-School MOOC - Example with FC H2 EDUCATION exercises fch2edu HHSD 01

Starts: Sep 29, 2020

Hydrogen handling, storage and distribution

Starts: Aug 14, 2019

Hydrogen Reuse

HReuse02

Starts: May 20, 2020

Graphic material

COURSE STAFF

Giovanni Cinti

Università degli Studi di Perugia - Italy

Prof. Konstatin Petrov

IEES - Bas Bulgaria

Prof. Anke Hagen

DTU-Energy Denmark

Senior Researcher Didier Blanchard

DTU-Energy Denmark

fch2edu HReuse02

Hydrogen Reuse

Introduction on Hydrogen Reuse

Handouts

Download Handout

0:00 / 0:00

▶ Speed 1.0x ◀®

Risks, Challenges and Lessons Learned

Risks

- e-platform for educational aspects regarding FCH themes will get used less (both sides, learners and teachers)
- Promotion and support of e-platform will decrease beyond project life-time
- Financing of technical infrastructure regarding daily operation, volume of operation and its maintenance not guaranteed

Bottlenecks

- NET-Tools depend on the functionality of open-EdX and MOOC Agency
 - No direct interactions between e-laboratory and e-learning
- The engagement of external collaboration (users and developers)
 - To keep attractiveness new contents must get developed and provided
 - Development of e-tools not an easy task

Risks, Challenges and Lessons Learned

Challenges (beyond the project life-time)

- To establish a financing background for continuous operation of e-platform
- To engage and motivate further users of e-platform (traffic by both sides)
- To keep attractiveness of e-platform by increasing and improving contents
- To ensure quality of provided e-learning and e-tools beyond project
- To support potential users and developers beyond project

Lessons Learned

- Nice to know about NET-Tools, but difficult to stay for collaboration
- Competition between single institutions (everybody like to have an own e-platform)
- Rejection by industry based on confidentiality of proprietary results

Exploitation Plan/Expected Impact

Exploitation

- Workshop to the development of technical architecture and contents of single sections
- 1st educational school
- 2nd educational school (webinar)
- 2 webinars to the usage of e-tools in safety concerns
- Test lessons at single Universities
- Presentations on different conferences and workshops (WHEC, EHEC, ECF, CzchHydDays, ICHS, etc.)
- Scientific Journals
- Own symposium at KIT
- Continued in 2021

#CleanHvdrogen

Impact

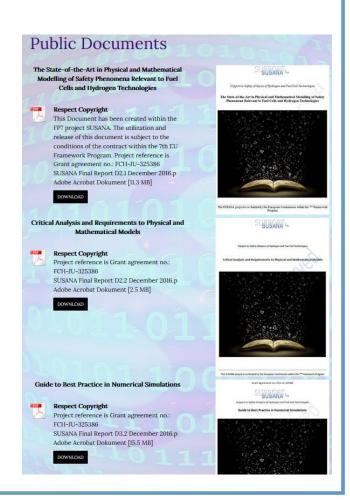
- To foster the education of students and industrial stuff on FCH-relevant themes
- To offer an opportunity to each to educate or to get educated in FCHrelevant themes
- To hold available a technical base for operation in future, also for potential further FCH-projects
- To support industry and academia by providing usable e-tools for calculation

Synergies With Other Projects And Programmes

Interactions with international-level projects and initiatives

Teaching Fuel Cell and Hydrogen Science and Engineering Across Europe within Horizon 2020

- Providing NET-Tools as e-platform to share e-learning contents
- Developing of e-learning content related to FCH-themes



Data Base for CFD modelling Hydrogen safety

Communications and Dissemination Activities

- Workshop to the development of technical architecture and contents of single sections
- 1st educational school
- 2nd educational school (webinar)
- 2 webinars to the usage of e-tools in safety concerns
- Test lessons at single Universities
- Presentations on different conferences and workshops (WHEC, EHEC, ECF, CzchHydDays, ICHS, etc. up to 15)

 © Elitsa Petkucheva * 1st Fuel cells and hydrogen technologies

 Fuel cells and hydrogen technologies
- Scientific Journals (up to 15)
- KIT energy symposium hydrogen
- LinkedIn Account (frequently)
- Newsletters (up to 6)
- Twitter (frequently)
- Communication continued in 2021

Many thanks for the Attention

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 736648. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme, Hydrogen Europe and Hydrogen Europe research.

#CleanHydrogen