

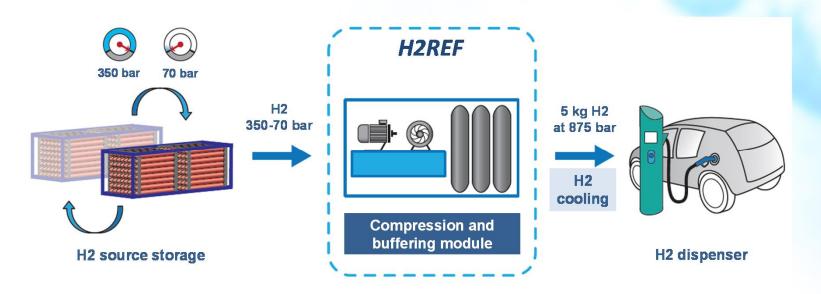
H2REF

DEVELOPMENT OF A COST EFFECTIVE AND RELIABLE FUEL CELL VEHICLE REFUELLING SYSTEM

Frederic Barth H2Nova

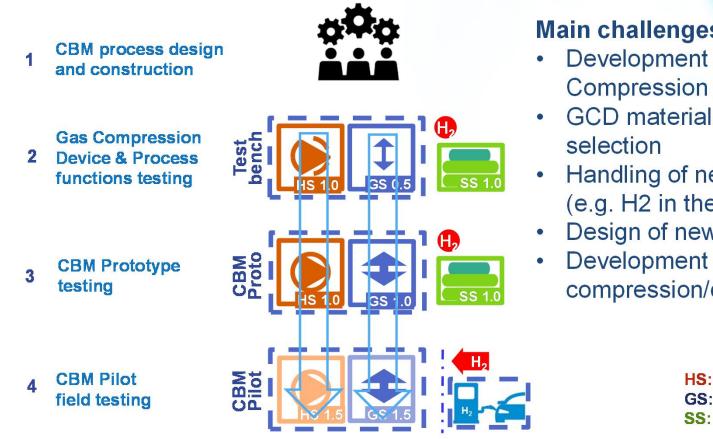
Coordinator: Djea Djeapragache : djeapragache@cetim.fr

Programme Review Days 2016 Brussels, 21-22 November



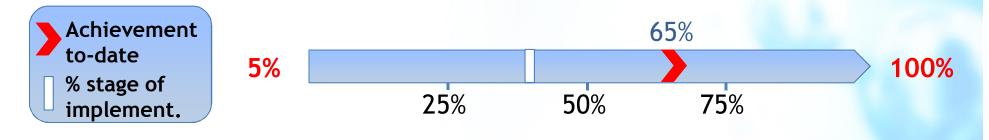
Project Information						
Call topic	FCH-01.5-2014 Development of cost effective and reliable hydrogen refuelling station components and systems for fuel cell vehicles					
Grant agreement number	671463					
Pillar (Horizon 2020)	Transport					
Start date	01/09/2015					
End date	31/08/2018					
Total budget (€)	6 453 859					
FCH JU contribution (€)	5 968 554					
Other contribution (€, source)	-					
Stage of implementation	39% project months elapsed vs total project duration, at date of November 1, 2016					
Partners	CETIM (w/ UTC); H2Nova; Haskel; Hexagon; CCS; LBST					

PROJECT SUMMARY


Focus : HRS compression and buffering function

Objective: Advance a novel hydraulics-based compression and buffering system that is very cost effective and reliable from TRL 3 to TRL 6, thereby proving highly improved performance and reliability

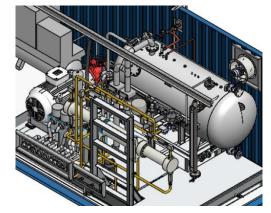
MAIN STEPS


Main challenges

- Development of a new Gas Compression Device (GCD)
- GCD materials testing and
- Handling of new phenomena (e.g. H2 in the hydraulic fluid)
- Design of new process functions
- Development of the compression/dispensing cycle

HS: Hydraulic skid GS: Gas skid SS: Storage system

PROJECT PROGRESS/ACTIONS - CBM System design and construction

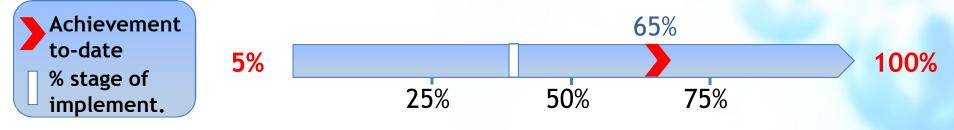


Achievements:

- Process fully defined and modelled
- Solutions found & System engineered
- Safety analysis (FMEA) performed
- System construction started

Future steps:

- Finalize design of process control
- Finalize system construction


Hydraulic skid

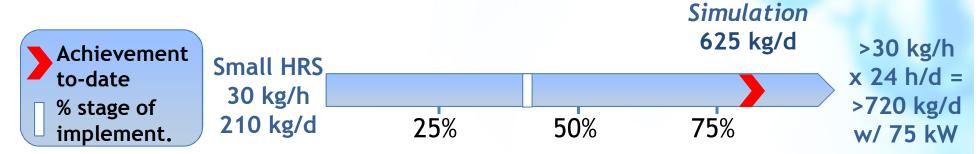
PROJECT PROGRESS/ACTIONS - Gas compression device development

Achievements:

- GCD definition and basic design
- GCD material testing up-and-running and candidate materials identified

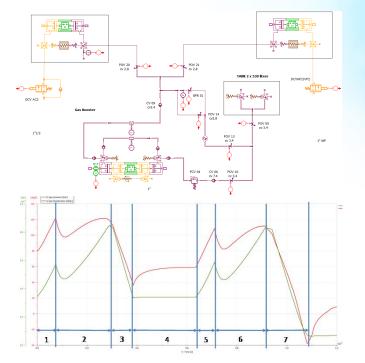
Future steps:

- Finalize GCD development and qualification
- Finalize evaluation and selection of materials


Measurement of Resistance to gas permeation decompression Materials screening and evaluation

PROJECT PROGRESS/ACTIONS - Maximisation of throughput

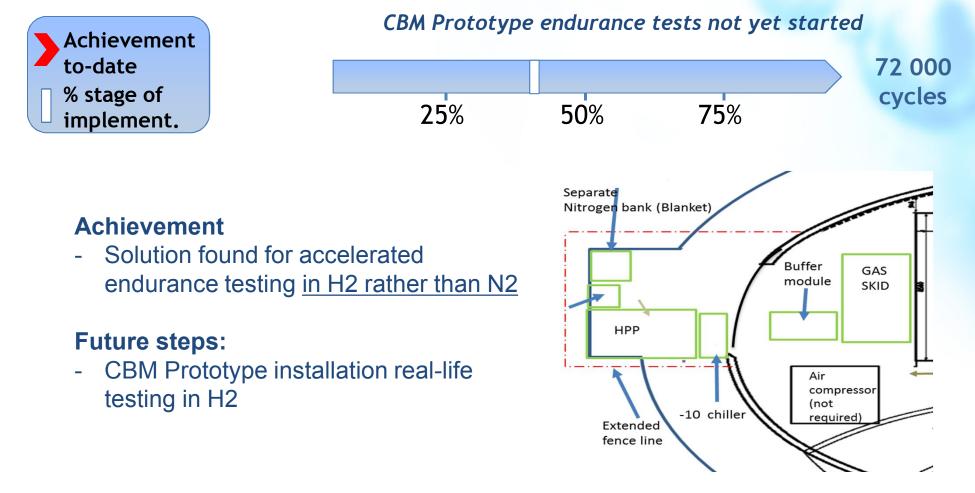
Target : "Round-the-clock" 30 - 75 kg/h capacity from a 70-350 barsource with a 75 kW power supplyCBM Proto



Achievement

 Multi physical (hydraulic, thermal, thermodynamic) model of the Test bench and CBM prototype – (AMESIM)

Future steps:


- Further optimisation of process cycle
- Real-life testing of CBM Prototype
- Further optimisation and real-life testing of CBM Pilot

PROJECT PROGRESS/ACTIONS - Endurance testing

Target: Simulate 10 years of operation

Test facility

PROJECT PROGRESS/ACTIONS - Other targets

Target : Average consumption of 1.5 kWh/kg

Target: CBM cost of 300 k€ assuming serial production of 50 units/yr

Achievement to-date % stage of implement.	Compressor + buffers: ~600 k€		ost projec 5%	tion not yet 50%	started 75%		CBM: 00 k€
Aspect	Parameter (KPI)		Unit	SoA	FCH JU Targets		
addressed			2016	Call topic	2017	2020	
HRS Cost	CAPE	κ	M€	1.5	1.0	0.8	0.6

Future steps:

- Cost projection and techno-economic after CBM prototype testing

HORIZONTAL ACTIVITIES

Particular focus on RCS (Regulations, Codes and Standards)

Objective: To define and prioritize recommendations to support RCS initiatives at the international level, with the aim of being able to market the same design in Europe, US, and Japan

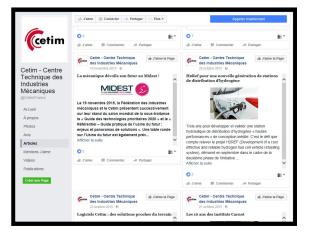
In parallel to product development:

- Identify the gaps in the RCS framework \checkmark
- Approach CEN TC 54 when the system is further developed
- Develop a roadmap and action plan for closing the RCS gaps

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interactions with projects funded under EU programmes						
HyTransfer (FP7)	Addresses the optimization of <u>cooling requirements</u> for H2 vehicle refuelling.					
	HEXAGON, H2Nova, CCS, and LBST participate both to H2REF a HyTransfer.					
	The combination of HyTransfer and H2REF results should bring substantial HRS cost reduction.					

DISSEMINATION ACTIVITIES


Web publications (ex.)

http://hydrogentoday.info/new s/2048

Social media

Facebook

CETIM 50 years event at hosted by Ministry of Economy and Finance

https://fabricationmecanique.files.wordpress.com/2016/ 04/dp-cetim-5-0-50-ans-16-fc3a9vrier-2016.pdf

Thank You!

Coordinator: Djea Djeapragache - djeapragache@cetim.fr

Speaker: frederic.barth@h2nova.fr