Green Industrial Hydrogen via steam electrolysis

Simon Kroop

Salzgitter Mannesmann Forschung GmbH

www.green-industrial-hydrogen.com

s.kroop@sz.szmf.de

Project Overview

Call year: 2018

• Call topic: FCH-02-2-2018 - Demonstration of large-scale steam electrolyser system in industrial market

Project dates: 01/2019 - 12/2022

% stage of implementation 01/11/2019: 45.8 %

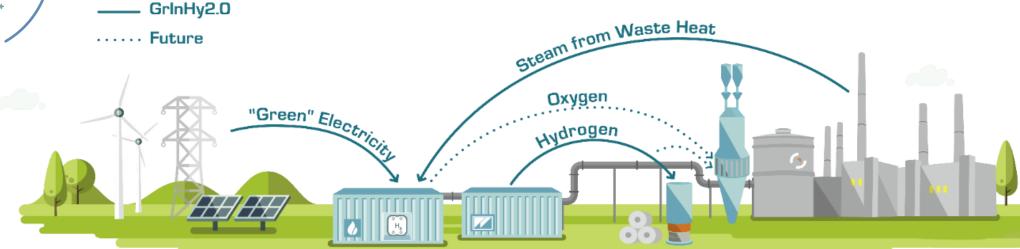
Total project budget: 6 million €

FCH JU max. contribution: 4 million €

Other financial contribution: none

Partners: Salzgitter AG, Sunfire GmbH, Paul Wurth S.A., Tenova SpA, CEA

Who is GrInHy2.0?



Project Summary - Mission

GrInHy2.0 is...

- the first Hight-Temperature Electrolyser of the Megawatt-class.
- most energy-efficient hydrogen production using green electricity and steam from waste heat.
- the full integration into the existing infrastructure of Salzgitter's steel plant.
- setting new standards in long-term stack validation of the Solid Oxide Electrolysis Cell technology.

(1) >13,000 operating hours

(2) Proven availability of >95 %

Project Progress - World's biggest HTE

Achievement to-date

Operational objectives

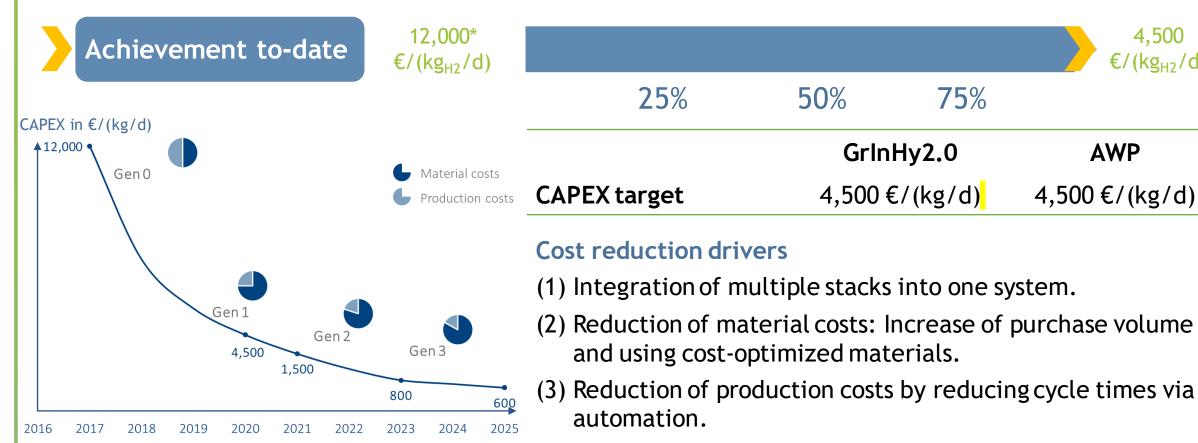
150 kW_{el,AC}

(3) Production of > 100 t 'green' hydrogen

				720 kW _{el,AC}
	25%	50%	75 %	
			GrlnHy2.0	AWP
Nominal Power			$720~\mathrm{kW}_{\mathrm{el,AC}}$	-
Net H ₂ Production Rate			18 kg _{H2} /h	>15 kg _{H2} /h
Electricity Consumption			39.7 kWh _{el} /kg	<40 kWh _{el} /kg
Part Load Ability			15100 %	
Ramp-up Time			5 min	

<u>Delivery of the world's largest High-Temperature Electrolyser</u>

4,500


€/(kg_{H2}/d)

AWP

*GrInHy: Costs includes RSOC BoP

Project Progress - Project Progress -**Reduction of CAPEX**

#CleanHydrogen

Exploitation Plan/Expected Impact

Impact

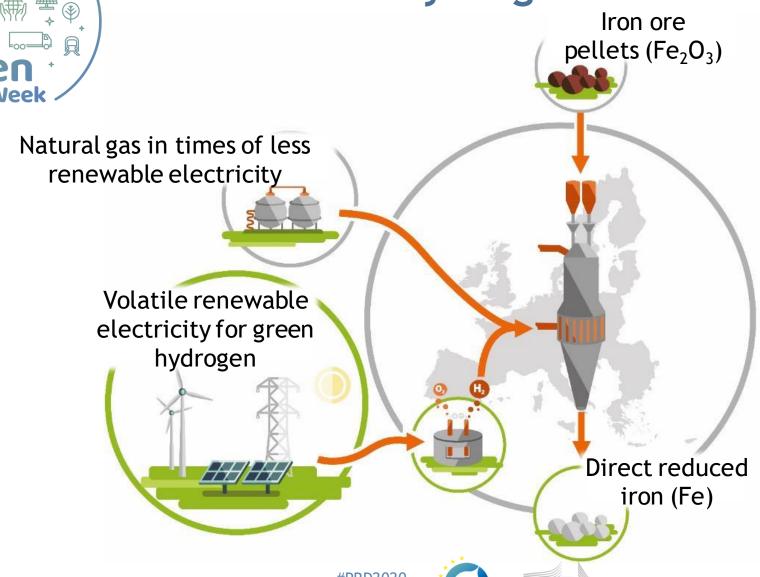
- (1) Increase energy efficiency by using 20 % less electricity compared to low-temperature electrolyser
- (2) Reduce operating and capital costs
- (3) Prove the reliability of HTE in a full industrial integration
- (4) Improve the TRL from 5 to 7 at end of the project

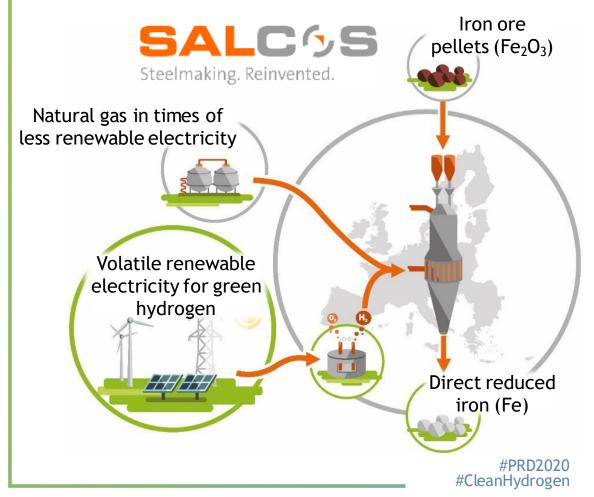
Exploitation

- (1) Exploitation of project results in cross-cutting activities such as standardization, regulatory aspects, etc.
- (2) Outcome of long-term stack testing will be used for improvement of stack development
- (3) Engineering experience and operational results will directly be exploited in MultiPHLY¹⁾ project
- (4) Potential benefits of coupling the HTE with the future hydrogen-based low carbon steelmaking will be applied in Salzgitter's SALCOS project

The iron and steel sector is responsible for $\frac{7}{8}$ of the world's CO_2 emissions.

But we have the unique chance to directly avoid those emissions by the use of hydrogen.

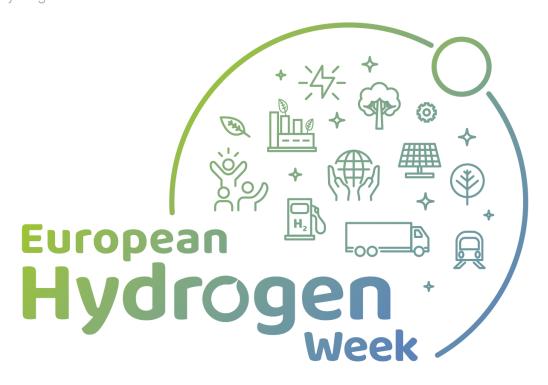



Milestone for hydrogen-based steelmaking Milestone for hydrogen-based steelmaking

#CleanHydrogen

Milestone for hydrogen-based steelmaking

Main technological advantages


- Established Direct Reduction technology
 - → technical maturity
- Flexibility in using volatile hydrogen shares
 - → supports the transition of the energy system
- Avoiding today's CO₂ emissions by more than 95% instead of recycling
 - → reduction potential of >150 Mt of CO₂ in Europe
 - First study on H_2 steelmaking available soon <u>@CORDIS</u>

www.green-industrial-hydrogen.com

