Topics in the call 2024

Hydrogen Storage and Distribution

D. Tsimis
Hydrogen Storage and Distribution Overview

Main Focus

Hydrogen Storage
- Microbiological interactions in H₂ underground storage in porous media
- Next generation aboveground storage solutions

Hydrogen Distribution
- Scaling up and demonstrating purification prototypes
- Flexible compressor coupled to RES

What is new
- Multi-purpose HRS up to 3,000kgH₂/day
Hydrogen Storage and Distribution Overview

<table>
<thead>
<tr>
<th>Topic</th>
<th>Type of Action</th>
<th>Budget (M€)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HORIZON-JTI-CLEANH2-2024-02-01: Investigation of microbial interaction for underground hydrogen porous media storage</td>
<td>RIA</td>
<td>3</td>
</tr>
<tr>
<td>HORIZON-JTI-CLEANH2-2024-02-02: Novel large-scale aboveground storage solutions for demand-optimised supply of hydrogen</td>
<td>RIA</td>
<td>4</td>
</tr>
<tr>
<td>HORIZON-JTI-CLEANH2-2024-02-03: Demonstration of hydrogen purification and separation systems for renewable hydrogen-containing streams in industrial applications</td>
<td>IA</td>
<td>6</td>
</tr>
<tr>
<td>HORIZON-JTI-CLEANH2-2024-02-04: Demonstration of innovative solutions for high-capacity, reliable, flexible, and sustainable hydrogen compression technologies in commercial applications</td>
<td>IA</td>
<td>6</td>
</tr>
<tr>
<td>HORIZON-JTI-CLEANH2-2024-02-05: Demonstration and deployment of multi-purpose Hydrogen Refuelling Stations combining road and airport, railway, and/or harbour applications</td>
<td>IA</td>
<td>8</td>
</tr>
</tbody>
</table>
Hydrogen Storage- Topics

HORIZON-JTI-CLEANH2-2024-02-01: Investigation of microbial interaction for underground hydrogen porous media storage

Comprehensive assessment of the risks due to microorganisms in porous media (TRL 2→4)

- Characterisation of microbial populations present in various EU porous media formation.
- Develop methodologies that enable cross-laboratory sample testing.
- Definition of guidelines and protocols to support SSOs in the identification of risks of storing H2 in porous media.
- Consortium should include wide coverage of SSOs across EU.

HORIZON-JTI-CLEANH2-2024-02-02: Novel large-scale aboveground storage solutions for demand-optimized supply of hydrogen

Enabling low-cost bulk storage of hydrogen (TRL 3→5)

- Reduce the footprint of the storage solutions by targeting 40kgH₂/m3
- Target a CAPEX of 600€/kgH₂ when the solution is scaled to 20 tonnes.
- Single or modular system should be demonstrated at TRL5 at a scale of minimum 100kg H₂
Hydrogen Distribution - Topics

HORIZON-JTI-CLEANH2-2024-02-03: Demonstration of hydrogen purification and separation systems for renewable hydrogen-containing streams in industrial applications

- Large scale prototype demonstration of a purification system at 100kg/day (TRL 5 → 7)
 - Reduction of energy consumption by 25% compared to the standard technology
 - Solution should demonstrate its applicability on 2 different types of streams (e.g. <20% and >98% H₂ content).
 - The 100kgH₂/day system should be demonstrated at TRL7 for a minimum of 3,000 hours.
 - Levelized cost of hydrogen separation/purification of less than 1€/kg

HORIZON-JTI-CLEANH2-2024-02-04: Demonstration of innovative solutions for high-capacity, reliable, flexible, and sustainable hydrogen compression technologies in commercial applications

- Direct coupling of the compressor to RES system and a demonstration of at least 24 months (TRL → 8)
 - Innovative non-mechanical compression or a hybrid consisting of at least one non-mechanical innovative element
 - Demo site should be secured ahead of proposal submission that allows access to a real RES production profile.
 - Flexibility both in terms of inlet pressure (from 1 bar to 200bar) but also in terms of the operation coupled to RES.
 - Able to cope with challenging conditions (hot/cold climates, marine environment, high altitude, remote etc)
Designing an HRS that can cope with the upcoming requirements of heavy-duty fleets (TRL 5→7)

- Develop high throughput stations:
 - Focus on heavy-duty vehicles with capacities ranging from 1,000 to 3,000 kg/day.
 - Individual fills of more than 200 kg should be achieved in less than 20 minutes.

- Reduce CAPEX and OPEX through innovation:
 - Implement innovative technological components (e.g., compressors, cooling systems, dispensers).
 - Optimize integration into the design and operation of the HRS to lower capital and operational costs.

- Standardize and industrialize HRS equipment:
 - Develop protocols for safe and reliable refueling in collaboration with OEMs and distributors.
 - Set specific targets for improved reliability, safety, and availability of HRS equipment and infrastructure.
Questions?
Join us on Slido - www.sli.do with the code #InfoDay2024

#CleanHydrogen #InfoDay2024