

Clean Hydrogen JU webinar

"Computational Fluid Dynamics (CFD) for hydrogen safety analysis"

7 December 2022

EUROPEAN HYDROGEN SAFETY PANEL (EHSP)

EUROPEAN PARTNERSHIP

Background

A brief timeline

In 2006 and 2009 NoE HySafe was suggesting an activity for sharing lessons learned and hydrogen safety experience across project boundaries and to maintain this expertise eventually even beyond program terms.

In 2014 the International Association for Hydrogen Safety HySafe proposed the installation of a safety panel to the Executive Director and Governing Board of the FCH JU.

After several discussions about formal aspects, terms of reference, vision, mission, mandates, etc. the European Hydrogen Safety Panel was launched by the FCH 2 JU in 2017

EHSP Vision

Reflecting the CHP vision

Hydrogen plays a key role in the Energy System constituting a safe and sustainable Energy Carrier.

Hydrogen is an enabler of the Energy Transition towards a decarbonized system.

EHSP Role

to **provide** the CHP

- independent safety expertise
- objective information
- education and training

in different forms for various groups of stakeholders and support the upscaling of hydrogen energy

Mission, Objectives and Activities

The EHSP assists the Clean Hydrogen Partnership both at programme and at project level in

- assuring that hydrogen safety is adequately managed, and
- promoting and disseminating a hydrogen safety culture

Current Members

Group of experts in Hydrogen Safety constituted by 15 members

Stuart Hawksworth

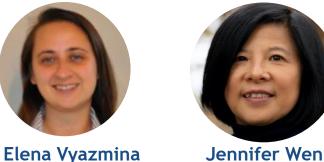
Thomas Jordan

Georg Wilfried Mair

Pratap Sathiah

Marta Maroño

Ulrich Schmidtchen


Ernst-Arndt Reinecke Vladimir Molkov

Daniele Melideo

Tom Van Esbroeck

Activities

Activities are grouped in 4 pillars and organised in Task Forces (TF)

- TF1 Support at Project level
- TF2 Support at Programme level

TF3 Data collection and assessment

TF4 Public Outreach

Elena Vyazmina

Thomas Jordan

Jennifer Wen

Trygve Skjold

Outcomes: Safety Planning Guidance Document

SAFETY PLANNING AND MANAGEMENT IN HYDROGEN AND FUEL CELLS PROJECTS - GUIDANCE DOCUMENT

CLEAN HYDROGEN PARTNERSIP

SAFETY PLANNING AND MANAGEMENT IN HYDROGEN AND FUEL CELLS PROJECTS - GUIDANCE DOCUMENT XX December 2022

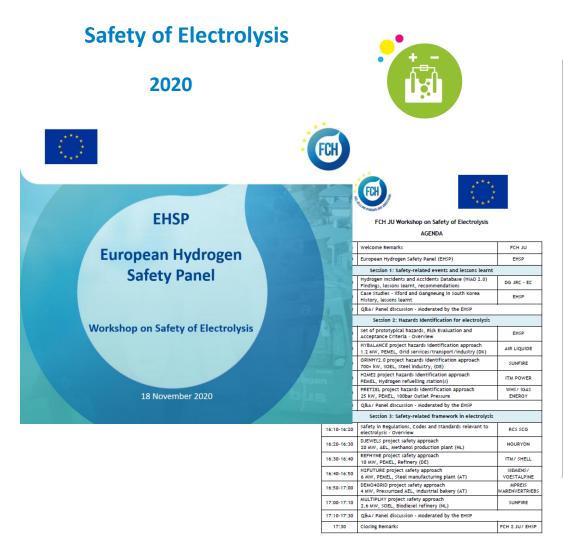
NOTICE

This document is prepared by the European Hydrogen Safety Panel (EHSP) with the mandate and support of the Fuel Cell and Hydrogen 2 Joint Undertaking (FCH 2 JU). Neither the FCH 2 JU nor the EHSP makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the FCH 2 JU or the EHSP.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the FCH 2. I/J or the EHSP. Additionally, the document does not provide any approval or endorsement by the FCH 2. J/J or the EHSP of any system(s), material(s), equipment or infrastructure discussed in the document.

TABLE OF CONTENTS

1 INTRODUCTION


3 PF		
	EPARATION OF SAFETY PLAN	
3.1	Project brief	
3.1.1	Description of a system, process or infrastructure to be developed by the project	
3.1.2	Description of safety systems and their functions	
3.1.3	Safety expertise and responsibilities in the project	
3.1.4	Relevant RCS	
3.1.5	Best safety practices	
3.1.6	Schedule of the safety plan update and reporting	
3.1.7	Composition, responsibilities and reporting schedule of a safety team	
3.2	Description of technical hydrogen safety activities	
3.2.1	Identification of safety vulnerabilities, hazards and associated risks	
3.2.2	Selection of incident scenarios	
3.2.3	Content and methods of hydrogen safety engineering to be applied.	
3.2.4	Prevention and mitigation strategies and innovative engineering solutions	
3.2.5	Reporting results on hydrogen safety engineering progress and risk assessment as applicable	
3.3	Description of organisational safety activities	
3.3.1	Description of work to be performed by staff that needs formal safety procedures	
3.3.2	General safety considerations to prevent harm to people in a workplace.	
3.3.3	Personnel training and education plan	
3.3.4	Safety review procedures and/or self-auclits	
3.3.5	Emergency response arrangements	
3.3.6	Management of Change (MOC) procedures	
3.3.7	Reporting on safety management and lessons learnt	
3.4	Other relevant documentation, safety procedures and outreach activities	
3.4.1		
3.4.2	Crisis management procedures	
3.4.3	Dissemination plan of project findings in hydrogen safety, including closed knowledge gaps and addressed	
3.4.3		

5 EUROPEAN HYDROGEN SAFETY PANEL	
Appendix 1. Hydrogen safety terminology and abbreviations	
Appendix 2. Applicable Regulations, Codes and Standards	
Legal framework	
Regulations and standards	
Role and distinction	
EU legislation	
Hydrogen gas regulations	
EU directives relevant for hydrogen	
Hydrogen standards related to hydrogen	
Appendix 3. Known best practices to implement safety strategies	
Appendix 4. Methods for identification of safety vulnerabilities, hazards a	and risk assessment
Hazard and Operability Analysis (HAZOP)	
Risk Binning Matrix	
Failure Mode and Effect Analysis (FMEA)	

Outcomes: Workshops

Safe Storage of Hydrogen

2021

sed Gas Hydrogen in road transport nfrastructure European Hydrogen

Workshop "Safe Storage of Hydrogen"

Safety Panel

		FCH 2 JU			
		FCH 2 JU			
- 50	P)	EHSP			
	hydrogen storage				
	dards rw	JRC			
A STATE	ents involving	EHSP			
		EHSP			
	e (CGH2) - On-	-board storage			
Asses	ferations	EHSP			
All Indiana		BMW			
		CLEAN ENERGY PARTNERSHIP			
ZHAUL project Heavy-duty vehicles	VDL				
EVIVE project Heavy-duty vehicles		ALL ENGINEERING			
HOR project CGH2 Tanks	FAURECIA				
YTUNNEL-CS project Safe design of TPRD/ TPRD-free t	UNIVERSITY OF ULSTER				
RA/ Panel discussion		EHSP			
reak/ contingency time					

ct in supply infrastructure				
	EHSP			
	ITM POWER			
	EIFER			
	AIR LIQUIDE			
	KARLSRUHE INSTITUTE OF TECHNOLOGY			
	EHSP			
	FCH 2 JU/ EHSP			

Fuel Cells and Hydrogen Joint Undertaking

Q&A/ Panel discussion

11:40-11:45 Break/ contingency time

10:30-10:40

10:50-11:00

www.fch.europa.eu fch-ju@fch.europa.eu

Outcomes: Webinars

"Safety planning and management in EU hydrogen and fuel cell projects" 22 April 2022

European Hydrogen Safety Panel (EHSP) Webinar "Safety planning and management in EU hydrogen and fuel cell projects", 22 April 2022

Safety plan implementation, monitoring and reporting

Chapter 3 of "Safety planning and management in EU hydrogen and fuel cells projects - guidance document", EHSP, 21 September 2021. https://www.fch.europa.eu/page/european-hydrogen-safety-panel

Elena Vvazmina, PhD

Member of European Hydrogen Safety Panel (EHSP)

"Computational Fluid Dynamics (CFD) hydrogen safety analysis" 7 December 2022

Clean Hydrogen JU webinar

"Computational Fluid Dynamics (CFD) for hydrogen safety analysis"

7 December 2022

EUROPEAN HYDROGEN SAFETY PANEL (EHSP)

Outcomes: Assessment and lessons learnt from HIAD 2.0

FUEL CELLS AND HYDROGEN 2 JOINT UNDERTAKING (FCH 2 JU)

Statistics, lessons learnt and recommendations from the analysis of the Hydrogen Incidents and Accidents Database (HIAD 2.0)

21 September 2021

NOTICE

This document is prepared by the European Hydrogen Safety Panel (EHSP) with the mandate and support of the Fuel Cell and Hydrogen Joint Undertaking (FCH 2 JU). Neither the FCH 2 JU nor the EHSP makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the FCH 2 JU or the EHSP.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the FCH 2 JU or the EHSP. Additionally, the document does not provide any approval or endorsement by the FCH 2 JU or the EHSP of any system(s), material(s), equipment or infrastructure discussed in the document.

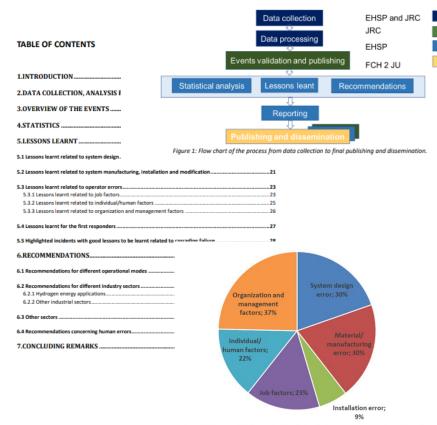


Figure 9: Causes of hydrogen incidents (multiple causes per event considered).

Table 1: HIAD 2.0 events classified by consequence and operation mode

Number events by consequence						
Total number	Explasions	Jet	rt fires Unign			No hydrogen
events		l		hydrogen reli	ease	release
424	238	1	17	55		14
	Number events by operational me			node		
	Normal operat	tion	Outside normal operation			Unclear
	299			113		12

Table 2: HIAD 2.0 events classified by industry sector

Sector	Number of events by sector
Chemical/ Petrochemical industry	259
Hydrogen transport and distribu-	43
tion	43
Nuclear power plant	23
Laboratory / R&D	15
Power generation	13
Hydrogen production	10
Aerospace	5
Entertainment	3
Hydrogen-powered vehicle	2
Stationary fuel cell	0
Other/Unknown	•
Other	34
Total	461

Finally, Table 3 lists the number of events according to causes. It should be noted that some events had multiple causes.

Table 3: HIAD 2.0 events classified by causes

Cause	Number of events by causes
System design error	126
Material/ manufacturing error	127
Installation error	38
Job factors	98
Individual/ human factors	94
Organization and management factors	158

"Statistics, lessons learned and recommendations from analysis of HIAD 2.0 database" will appear soon in International Journal of Hydrogen Energy

Outcomes: Support at Programme Level

Emergency Crisis Management

CLEAN HYDROGEN JOINT UNDERTAKING

DRAFT Crisis Management Plan

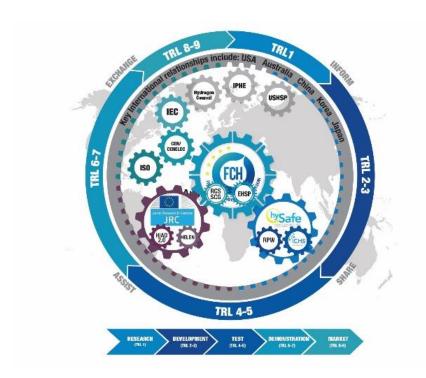
Version 22 October 2022

NOTICE

This document is prepared by the European Hydrogen Safety Panel (EHSP) with the mandate and support of the Clean Hydrogen Joint Undertaking. Neither the Clean Hydrogen Joint Undertaking nor the EHSP makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favouring by the Clean Hydrogen Joint Undertaking or the EHSP.

The views and opinions of authors expressed herein do not necessarily state or reflect those of the Clean Hydrogen Joint Undertaking or the EHSP. Additionally, the document does not provide any approval or endorsement by the Clean Hydrogen Joint Undertaking or the EHSP of any system(s), material(s), equipment or infrastructure discussed in the document. TABLE OF CONTENTS

Introduction	
1.1. Objectives and Scope of the Crisis Management	
THREATS TO THE CLEAN HYDROGEN JOINT UNDERTAKING	
THE CRISIS MANAGEMENT PLAN (CMP)	
3.1. Major resources for the CMP	
3.1.1. Information	
3.1.2. Crisis Management Team	
3.1.3. The EHSP as central resource for crisis management	
3.1.4. Other resources for crisis management	
3.2. Management Responsibilities	
3.3. Internal Communication	
3.4. External Communication	
3.5. Detailed Action Plans	
3.5.1. Initiation of Internal Communication	
3.5.2. Decision to Activate Crisis Management	
3.5.3. Post-processing	
Training, Testing the CMP	
MONITOR THREATS AND UPDATE CMP	
EUROPEAN HYDROGEN SAFETY PANEL	
Literature	
Annex - Templates for External Communication	
8.1. Event Report (Template)	
8.2. Draft Initial statements	
8.3. Guidelines for staff answering calls	
8.4. Information sheets and press kits	
8.5. Locations for press conferences	
8.6. List of media channels to be used	
8.7. Tools and systems for monitoring and engaging social media	
8.8. List of groups involved and their roles and functions	
8.9. Contact information for resources, including points of contact	


.

Outcomes: Support at Programme Level

Collaboration: EHSP-USHSP

Outcomes: Public Outreach

Communication Strategy // Website // FAQs // TIM // KEY MESSAGES

Key Messages

- Hydrogen will play an essential role in energy systems as a clean and sustainable energy carrier.
- To bring the benefits of hydrogen to society, hydrogen technologies must be safely developed and used across a variety of applications and sectors.
- Hydrogen systems can be as safe as systems based on conventional energy carriers, provided the specific properties of hydrogen and the hydrogen system are properly addressed.

Presentations at events

- EHEC, Madrid, 18-20 May.
- ISFEH, Oslo, 22-27 May.
- IPCEI initiative "Safe H2", Online, Tuesday 7 June
- International Workshop on Hydrogen Infrastructure for Transportation, Brussels, 12-13 September 2022
- IEA TCP Hydrogen Task 43 meeting in Buxton, 17-21 October:
 - General presentation of the EHSP with the focus on TF1
 - Analysis of the past incidents within HIAD 2.0 with a focus on lack of the safety culture

Crysis management

https://www.timanalytics.eu/TimTechPublic/
main.jsp?dataset=s_1622

https://www.clean-hydrogen.europa.eu/get-involved/european-hydrogen-safety-panel-0 en

Get in contact with the EHSP by email at EHSP@clean-hydrogen.europa.eu

