

Research activities for stationary applications

Dionisis Tsimis

PRD 2017 *23 November 2017*

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Agenda

PROGRAMME REVIEW DAYS 2017 FUEL CELLS AND HYDROGEN: FROM TECHNOLOGY TO MARKET 23-24 NOVEMBER, BRUSSELS

PANEL 4 **RESEARCH ACTIVITIES FOR STATIONARY APPLICATIONS: Materials, components,** diagnosis, performance phenomena, subsystem design and production

09:00 - 09:20 09:40 - 10:00

10:00 - 10:20 10:20 - 10:40 10:40 - 11:00

Portfolio overview by **Tsimis Dionisis**, FCH JU µCHP systems using accelerated tests SOSLeM: Solid Oxide Stack Lean Manufacturing CHP applications

- 09:20 09:40 ENDURANCE: Enhanced durability materials for advanced stacks of new solid oxide fuel cells SECOND ACT: Simulation, statistics and experiments coupled to develop optimized and durable

 - NELLHI: New all-European high-performance stack: design for mass production
 - MATISSE: Manufacturing improved stack with textured surface electrodes for stationary and

STATIONARY APPLICATIONS Fuel cells for combined heat and power

Stationary

233 Mill Euros
 70 Projects

Research

42 projects – 165 M€

* Other resources including private and national/regional funding

From lab scale to mass manufacturing

Technology neutral approach – Wide research scope

Dissemination & Exploitation

Proton Exchange Membrane Fuel cells

PEMFC – Improvements on MEAs lead to increased lifetimes

Both Low and High temperature PEMFC projects show strong focus on improving MEAs

- Degradation mechanisms
- Improving Modelling accuracy
- Validation of improved components

• On-board EIS

- Fault Detection/Prevention
- Aims at 30% lifetime increase

 Improved current distribution • Stable HT-PEM membranes

Based on 2016 project data gathered in the FCH2 JU 2017 data collection exercise

Automation reducing costs even at low production volumes

Minimising use of critical raw materials

Based on 2016 project data gathered in the FCH2 JU 2017 data collection exercise

SOFC – Stack durability pushed beyond state of the art

Ambitious target set for 2020 : 90,000h of stack lifetime

- Degradation mechanisms
- Improving Modelling Accuracy
- Validation of Improved components
- Total harmonic distortion analysis
- Fault Detection/Prevention
- Sealants for higher thermal cycling
- Innovative Interconnect designs
- Coatings limiting Cr evaporation

SOFC – Manufacturing picking up leading to cost reductions

Half of the projects had manufacturing as their central theme

Based on 2016 project data gathered in the FCH2 JU 2017 data collection exercise

Dissemination & Exploitation

Dissemination & Exploitation

Conclusion

Dissemination contributing to open science

Widening the audience for dissemination from scientists and academia to high school students

Dissemination & Exploitation

Research

SOFC

Research providing the foundations for next generation systems

Manufacturing taking a central role

Dionisis Tsimis

Project Officer dionisis.tsimis@fch.europa.eu

For further information

www.fch.europa.eu

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Agenda

PANEL 4 RESEARCH ACTIVITIES FOR STATIONARY APPLICATIONS: Materials, components, diagnosis, performance phenomena, subsystem design and production

09:00 - 09:20 Portfolio overview by Tsimis Dionisis, FCH JU
09:20 - 09:40 ENDURANCE: Enhanced durability materials for advanced stacks of new solid oxide fuel cells
09:40 - 10:00 SECOND ACT: Simulation, statistics and experiments coupled to develop optimized and durable µCHP systems using accelerated tests
10:00 - 10:20 SOSLeM: Solid Oxide Stack Lean Manufacturing
10:20 - 10:40 NELLHI: New all-European high-performance stack: design for mass production
10:40 - 11:00 MATISSE: Manufacturing improved stack with textured surface electrodes for stationary and CHP applications

17