

AutoStack-CORE Automotive Fuel Cell Cluster for Europe II

Ludwig Jörissen Speaker Affiliation

http://autostack.zsw-bw.de ludwig.joerissen@zsw-bw.de

Programme Review Days 2016
Brussels, 21-22 November

PROJECT OVERVIEW

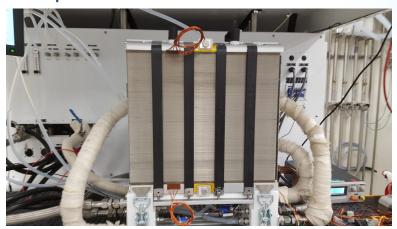
Project Information				
Call topic	SP1-JTI-FCH.2012.1.2			
Grant agreement number	325335			
Application area (FP7) or Pillar (Horizon 2020)	Transport and Refuelling Infrastructure			
Start date	01/05/2013			
End date	28/02/2017			
Total budget (€)	14 673 625			
FCH JU contribution (€)	7 757 273			
Other contribution (€, source)	-			
Stage of implementation	91% project months elapsed vs total project duration, at date of November 1, 2016			
Partners	ZSW, BMW, CEA, DANA, Fraunhofer, JRC-IET, Freudenberg, PSI, Powercell, Greenerity, VW, Volvo, Swiss Hydrogen			

PROJECT SUMMARY

AutoStack Core Consortium

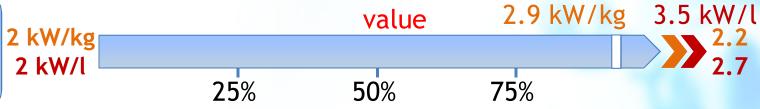
Automotive OEMs

Component and System Suppliers


Research Institutes

Evo1 Evo2

Objectives


- Develop best of its class automotive stack technology
- Utilize industrial components and materials
- Establish platform concept to enable additional vehicle and stationary applications
- Ensure scalability to address various power levels
- Achieve highest power density to address packaging and cost
- Reduce Pt-use while maintaining performance

PROJECT PROGRESS/ACTIONS - Volume, Weight Related to Nominal Power

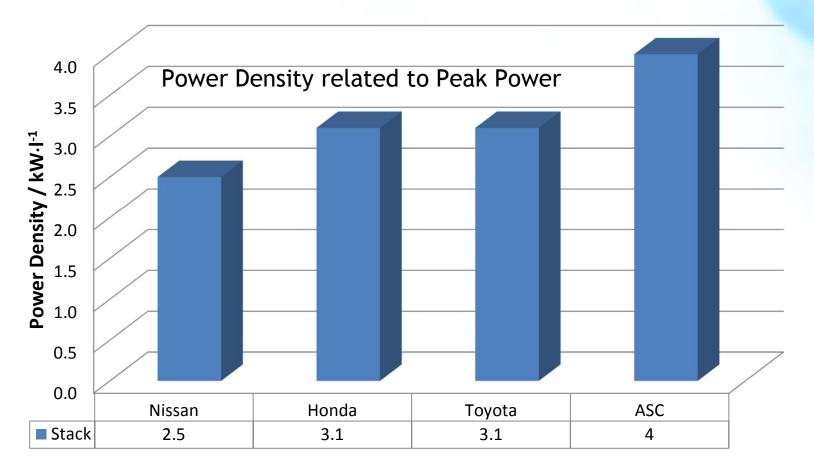
Aspect	ct Baramatar (KDI)		Unit SoA		FCH JU Targets		
addressed	addressed Parameter (KPI)		2016	Call topic	2017	2020	
Weight	Specific power@ 1.5 A/cm ²	kW/kg	2.9 (3.0 @ peak)	> 2	-	-	
Volume	Power Density @ 1.5 A/cm ²	kW/l	3.5 (4.0 @ peak)	> 2	-	-	

Future steps:

Goal achieved,

further design optimizations are targeted to improve manufacturing and make use of improved peak power capabilities

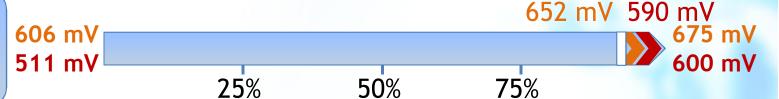
PROJECT PROGRESS/ACTIONS -Weight, Volume Related to Nominal Power

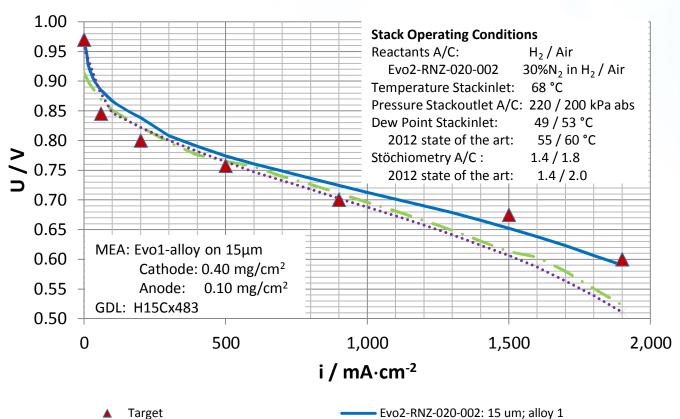

Specifications	Unit	Target	EVO1 Outcome	EVO2-A Outlook	
Volume of the stack exterior	dm³	<55	34.3	~27.7	
Weight without fluids an fully humidified membranes (net weight)	kg	<44	46.3	33.1	
Power density at nominal load	kW/ dm3		2.7	~3.55	
Power density at peak load	kW/ dm3		2.8	~4.05	

PROJECT PROGRESS/ACTIONS -Weight, Volume Related to Peak Power

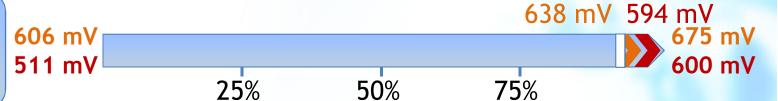
PROJECT PROGRESS/ACTIONS - Performance

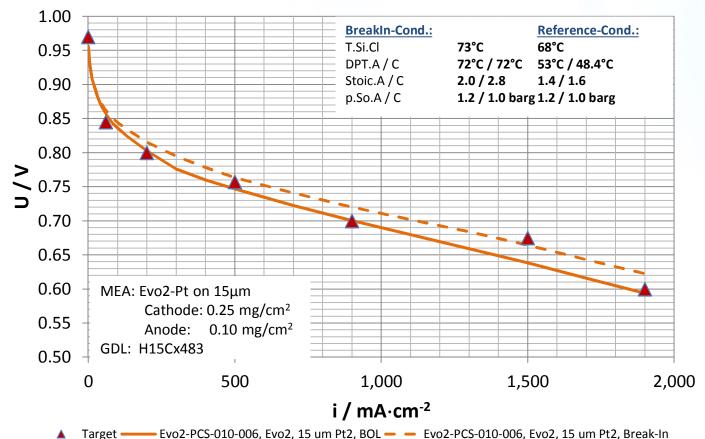
Aspect	Parameter (KPI)	Unit SoA		FCH JU Targets		
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Avg. Cell- Performance	Average single cell voltage @	mV				
	1.5 A⋅cm ⁻²		652	675	-	-
	1.9 A·cm ⁻²		590	-	-	-


Future steps:


Improve operating conditions
Improve activation procedure
Optimize material combination: CCM, GDL

PROJECT PROGRESS/ACTIONS - Performance

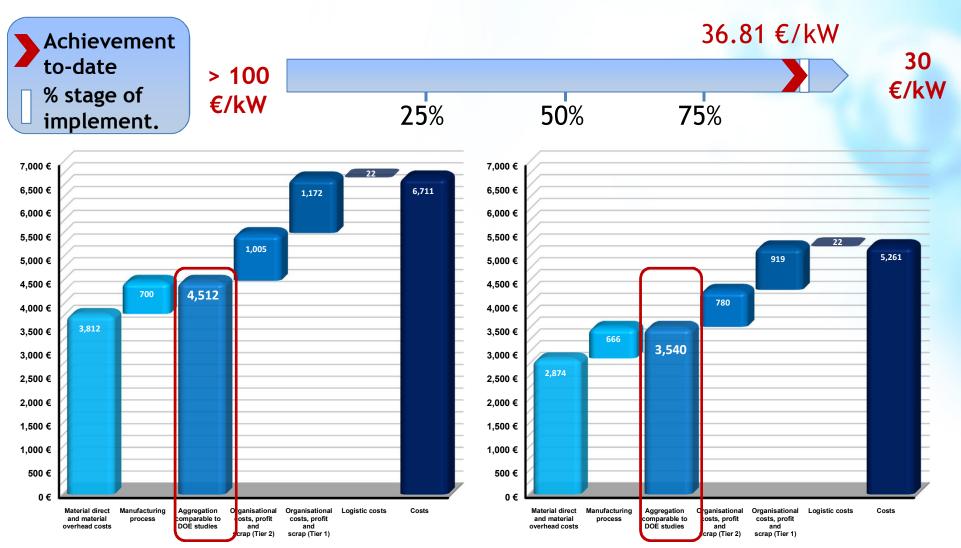



• BEL-006 Evo1 Full Stack, 15 um, alloy 1 • • • • 2012 state of the art

PROJECT PROGRESS/ACTIONS - Performance

PROJECT PROGRESS/ACTIONS - Cost

Aspect	Downwater (KDI)	Unit SoA	FCH JU Targets			
addressed	Parameter (KPI)		2016	Call topic	2017	2020
Cost	Specific cost comparable to DoE studies	€/kW	36,81 @ 30 000 p.a.	-	~48.1 *	~24.1


* Based on 48.1% system cost described in MAIP 2008-2013 ratio taken from B.D. James et al.: Mass Production Cost estimation of direct H₂ PEM Fuel Cell Systems for transport applications

Future steps:

Improve BPP-design
Improve manufacturing processes

PROJECT PROGRESS/ACTIONS - Cost

¹ Pt content: 0,50 mg/cm² (EVO1) and 0.35 mg/cm² (EVO2) [Pt price = 1.500 \$/tr.oz, similar to DOE study, 2014] {Exchange rate from 20.11.2014: 1 US Dollar (USD) = 0,798 Euro (EUR)}

² Incl. SG&A and R&D

³ Incl. Logistic costs for components and stack (Tier1 and Tier2)

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interactions with projects funded under EU programmes				
Stack-Test	Use of project results (test modules and test programs)			
IMPACT	Exchange of information			
Interactions wit	h national and international-level projects and initiatives			

DISSEMINATION ACTIVITIES

Public deliverables

1 « Stakeholder Workshop Documentation «

Conferences/Workshops

- 1 organised by the project
- 1 in which the project has participated

Social media

http:autostack.zsw-bw.de

Publications: 2

- A. Martin, L. Jörissen, ECS Transactions 42 (1) 31-38 (2012)
- A. Martin, L. Jörissen, Hypothesis 2016 Provceedings Volume

Patents: 1 application

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

Several specific business discussions with OEMs.

Test sample sold to third party OEM.

One full size stack sold to a vehicle demo project.

Stacks used in 2 new and provided to 3 additional FCH-JU projects

Discussions on follow-up project with 4 OEMs consolidated.

Impact

Low stack numbers suppply for demo and testing currently.

Development is recognized in the community.

Successful demonstration, feedback on stack robustness in real world operation.

Limited production for demo market launch in the next 12 to 24 months.

Volume production intended in 2020.

Thank You!

Ludwig Jörissen: ludwig.joerissen@zsw-bw.de

http://autostack.zsw-bw.de

RISKS AND MITIGATION

Voltage of 675 mV at 1.5 A not reached under the operating conditions defined in the project.

Improve matching of CCM, GDL and flow field.

Reconsider system requirements to operating conditions, pressure, humidity and flow.

Risk 2

Mitigation 2

Risk 3

Mitigation 3