ArtipHyction

"Fully artificial photo-electrochemical device for low temperature hydrogen production" FCH JTU 2011 call Grant agreement: 303435

Guido Saracco Politecnico di Torino

Partnership

0. Project and partnership presentation (slide 1)

N	Name	Logo	Natio n	Key investigators	Main roles in the project	Reasons for selecting this partner		
1	Politecnico di Torino		IT	Prof. G. Saracco Prof. J. Barber Prof. E. Garrone Prof. E. Tresso	Water-splitting catalyst developments, electrode development, modelling, LCA	POLITO is a member of the FCH JTI.Prof. Saracco coordinates the precur-sor project Solhydromics and itakes part in other EU projects. Prof. Barber is a world- class scientist in photosynthesis. Prof. Ruggeri and Tresso owns vaste expertise on anaerobic digestion and Si semiconductors, respectively.		
2	HySyTech srl		IT	Ing. M. Antonini Ing. S. Solaro	Coordination, System modelling, Prototype design, test rig development	Member of the FCH JTI and of the previous Solhydromics project. The comp produces and sells hydrogen production systems based on patents as WO Pa WO/2005/117,176 by Antonini et al.; PCT/EP2004/051207 by Antonini et al., (www.hysytech.com)		
3	Commissariat à L'Energie Atomique	œ	FR	Dr. V. Artero Prof. M. Fontecave Dr. S. Palacin	Hydrogenase mimics development	Member of the FCH JTI. Prof. Fontecave's group has a leading role worldwide on hydrogenase mimics and hydrogen producing microorganisms, and is one of the major groups in the field of artificial photosynthesis		
4	Chemical Process Eng. Res. Institute	apt	EL	Prof. A. Kostandopoulos	Microporous electrode engineering, modelling	Member of the FCH JTI. Prof. Kostandopoulos has a huge expertise in the engineering of porous media. His involvement was generated by cooperation with POLITO in the ATLANTIS project, coordinated by Kostandopoulos and related to nanostrcturing of porous catalytic reactors.		
5	Solaronix SA	SOLARONIX "in sun we trust"	СН	Dr. T. Meyer	Electrodes and electrodes assembly development	World supplier of nanocristalline TiO ₂ , ruthenium bipyridine complexes and electrolytes, mainly for the dye solar cell community since 1996. Producer of light soaking test equipment & solar simulators via unique "sulfur-plasma" lamp (www.solaronix.com). Partner of Solhydromics.		
6	Lurederra Foundation	urederra	ES	Dr. C. Fernandez	Synthesis and characterization of ITO, FTO, AZO powders	The synthesis of micorporous transparent conducting oxides is one of the most innovative challenges in ArtièHyction. Top level performance of this research centre convinced the other partners that this is the best candidate to face this challenge and develop the needed synthesis routes.		
7	Tecnologia Na-varra de Nano- productos SL		ES	Dr. I. Sancet	Engineering and production of ITO, FTO, AZO batches	Tecnan is the natural industrial exploitation environment for the development achieved at Lurederra. It has the expertise and the apparatus to drive lab synthesis to large scale industrial production techniques.		
8	Pyrogenesis SA	PyroGenesis	EL	Dr. M. Vardavoulias	Engineering and preparation of electrodes	Partner of the above mentioned IP project ATLANTIS, Pyrogenesis was selected in the presen project for its capability to make design directives on microporous materials a reality via a number of industrially amenable techniques effectively used in a number of earlier developments		

Concept&objectives

1. Project achievements (slide 1)

-) 10% conv. of solar energy into pure H₂
-) >1000 h durability tested

-) without using expensive noble metals
-) proof of concept at 3 g/h H₂ equivalent

The Solhydromics prototype as starting point

1. Project achievements (slide 2)

www.solhydromics.com

The Solhydromics prototype as starting point

1. Project achievements (slide 3)

www.solhydromics.com

1% solar energy conversion efficiency, improved stability: \rightarrow Better nanostructuring needed for electrodes → Addition of chromophores for >450 nm

wavelengths

New water-splitting catalyst patented

1. Project achievements (slide 4)

Our water splitting catalyst at work 1. Project achievements (slide 5)

Hydrogen evolution catalysis

1. Project achievements (slide 6)

Photosensitizers investigated in ArtipHyction: (a) metal diimine complex (b) new photocatalytic organic tandem-molecules synthesized either using a heteroditopic phenantroline ligand.

Need of engineered volumetric electrodes

1. Project achievements (slide 7)

Related Topic in the AIP 2. Alignment to MAIP/AIP (slide 1)

Topic SP1-JTI-	Development	of	efficient	chemical	or	biological	systems
FCH.2011.2.6: Low-	converting sol	ar e	nergy into	chemical e	energ	gy for water	splitting.
temperature H ₂	Efficient, easy	to ł	nandle che	mical or bi	ologi	ical systems	shall be
production	developed and	d th	e low tem	perature h	ydro	gen produc	tion shall
<u>processes</u>	be demonstrat	ed i	n small sca	ale reactors	5.		

Main targets/expected impacts

- Improved and novel nano structured materials for photo processes comprising photo catalysts, photo anodes interfaced with liquid or new polymer electrolytes
- Chemical systems for highly efficient low temperature water splitting using solar radiation
- Demonstration of solar to hydrogen efficiency > 5%
- Demonstration of systems with a perspective of >10.000 h lifetime (for solar water splitting processes)
- Small to medium scale applications ranging[1] from 100 W for domestic use (ca. 3 g/h H₂ equivalent) up to 100 kW (ca. 3 kg/h H₂ equivalent) for commercial use.
- Design and construction of a reactor for providing hydrogen for consumers at low costs

Efficiency targets

2. Alignment to MAIP/AIP (slide 2

- This is a field at the borderline between science and technology in which stringent market constraints are difficult to fix.
- Efficiency targets should be referred to a precise fraction of the spectra (e.g. >400 nm).
- The efficiency target of 5% of Topic FCH.2011.2.6 is challenging but not enough ambitious for a short term market entry. Daniel Nocera recently achieved this with a triple-junction Si PV cell lined at opposite sides with inorganic catalysts.
- Conversely, the 5% conversion efficiency might be appropriate for solar fuels obtained via CO₂ reduction, which is though outside the mission of the FCH JTI initiative.
- Despite unlikely to be achieved, the efficiency target of 10% conversion into hydrogen is mandatory to achieve market penetration on the grounds of simple cost analysis.

Cost analysis 2. Alignment to MAIP/AIP (slide 3)

It is perhaps time to start including cost indications in this area

With a solar light to hydrogen conversion efficiency of 10 % and an average solar radiation input of 1000 kWh per m² in Europe, one gets 3 kg of solar H₂ per year per m² of exposed PEC converter surface. If a 7 \in /kg cost of solar-electrolytic hydrogen is considered, each single panel will provide an equivalent hydrogen value of about 24 \in /m²/y. Assuming a lifetime of 20 years of the Solhydromics panels (i.e. a depreciation of 5 % p.a.) and a money capitalization of 5 %, one can afford costs up to 200 \in /m² of the Solhydromics panels including the installation.

Neighbouring technologies designed for 10,000 hrs lifetime

DSC cells	PEM fuel cells			
Today 500 €/m ²	Today 60 €/m ²			
Projected 80 €/m ²	Projected 30 €/m ²			

Dissemination and public awareness 3. Cross-cutting issues (slide 1)

Recent Papers

- C. Pagliano, F. Chimirri, G. Saracco, F. Marsano, J. Barber, *Photosynthesis Res.* 2011, 108, 33-46.
- C. Pagliano, S. Barera, F. Chimirri, G. Saracco, J. Barber, *Biochimica et Biophysica Acta (BBA) Bioenergetics, 2011, doi:10.1016/j.bbabio.2011.11.001*
- S. Barera, C. Pagliano, T. Pape, G.Saracco, J. Barber, *Philosophical Transactionis of the Royal Society*, **2012, in press**.
- S. Bensaid, G. Centi, E. Garrone, S. Perathoner, G. Saracco 'Artificial leaves for solar fuels from CO2' ChemSusChem, 2011, 10.1002/cssc.201100661
- Morra S., Valetti F., Sadeghi, S.J., King P.W., Meyer T., Gilardi G. Chem Commun 2011, 47, 10566-568
- S. Bensaid, G. Saracco, in Advanced membrane science and technology for sustainable energy and environmental applications (Ed.s A. Basile, S. Nunes), Series in Energy No. 25, Woodhead Pub. Cambridge, UK 2011, 610-644.
- Ijeri V., Cappelletto L., Bianco S., Tortello M., Spinelli P., Tresso E., J. Membr. Sci., 2010, 363, 265-270.
- M. Tortello, S. Bianco, V. Ijeri, P. Spinelli, E. Tresso, J. of Membr. Sci., 2012, in press: DOI: http://dx.doi.org/10.1016/j.memsci.2012.05.018
- S. Zanarini, S. Vankova, S. Hernandez, V. S. Ijeri, M. Armandi, E. Garrone, B. Bonelli, B. Onida and P. Spinelli, Chem. Commun., 2012, 48, 5754–5756

Patent

• E. Garrone, B. Bonelli, S. Vankova, G. Saracco, Use of aluminophosphates substituted with transition metals as water splitting catalysts, Italian Patent Application on 27-07-2011

Web site: <u>www.artipHyction.org</u>

Competing efforts to which we are linked 4. Enhancing cooperation and future perspectives (slide 1)

emiconductor

Cathode

Photo-anode

marticles

Leiden

Univ. Messina

The monocellular leaf perspective 4. Enhancing cooperation and future perspectives (slide 2)

Application in a biorefinery 4. Enhancing cooperation and future perspectives (slide 3)

Photoactive alkali electrolyser

4. Enhancing cooperation and future perspectives (slide 4)

Co-TIF = Co-tetrahedral imidazolate framework

Anode: $2OH^{-} \rightarrow 1/2O_{2} + H_{2}O + 2e^{-}$ Cathode: $2H_{2}O + 2e^{-} \rightarrow H_{2} + 2OH^{-}$

Legend: : 0: Current generator, 1: Hydrogen, 2: Electron flow, 3: Load, 4: Oxygen, 5: Cathode, 6: Electrolyte, 7: Anode, 8: Water, 9: Hydroxyl ions, 10. Metal hydroxide.