

STAGE-SOFC Innovative SOFC system layout for stationary power and CHP

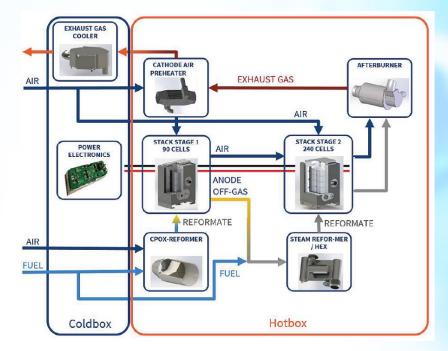
Oliver Posdziech Sunfire GmbH

www.stage-sofc-project.eu Email Coordinator: Matti.Reinikainen@vtt.fi

Programme Review Days 2017 Brussels, 23-24 November

PROJECT OVERVIEW

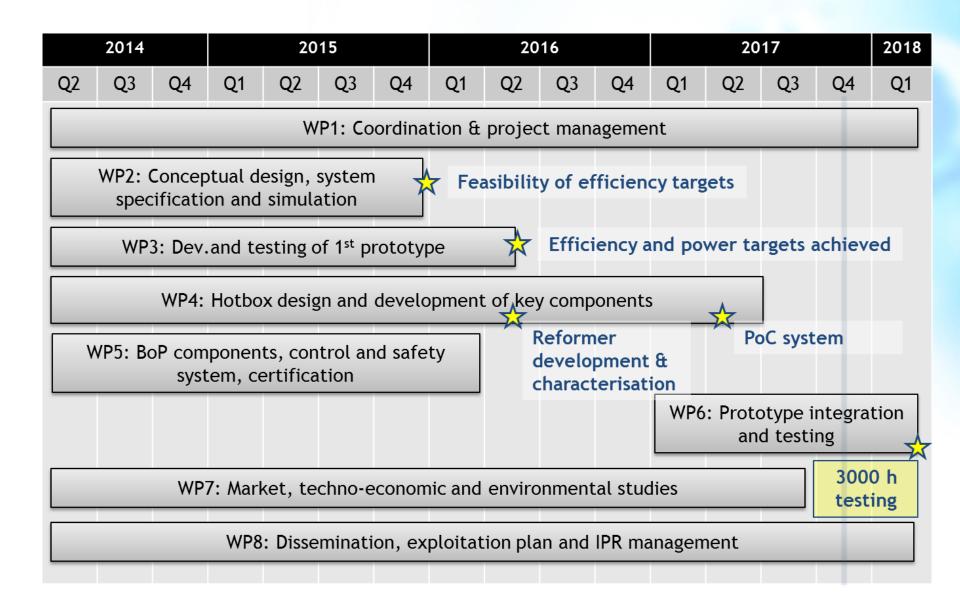
- Call year: 2013
- Call topic: SP1-JTI-FCH.2013.3.4 Proof of concept and validation of whole fuel cell systems for stationary power and CHP applications at a representative scale Proof of concept and validation of whole fuel cell systems for stationary power and CHP applications at a representative scale
- Project dates: 01/04/2014 30/04/2018
- % stage of implementation 01/11/2017: 95%
- Total project budget: 3,970,268.20 €
- FCH JU max. contribution: 2,165,724.60 €
- Other financial contribution: €
- Partners: VTT TECHNICAL RESEARCH CENTRE OF FINLAND (VTT), Sunfire GmbH (SF), ICI Caldaie S.p.A. (ICI), Lappeenranta University of Technology (LUT), West Pomeranian University of Technology, Szczecin (ZUT)



PROJECT OVERVIEW

Project objectives

- Development of a 5 kW_{el} PoC prototype of a new SOFC concept with a serial connection of one CPOX stage and one steam reforming stages.
- Combination the benefits of the simple and robust CPOX layout with the high efficiencies obtained by the steam reforming process.
- The system should achieve an electrical efficiency of 45% and an overall efficiency of 80%



STAGE SOF

Applications

- Small-scale CHP or CCP for apartment houses or commercial sector
- Off-grid power generator for pipeline, telecommunication or remote measurement applications
- Back-up power for data centers

PROJECT OVERVIEW

PROJECT SUMMARY

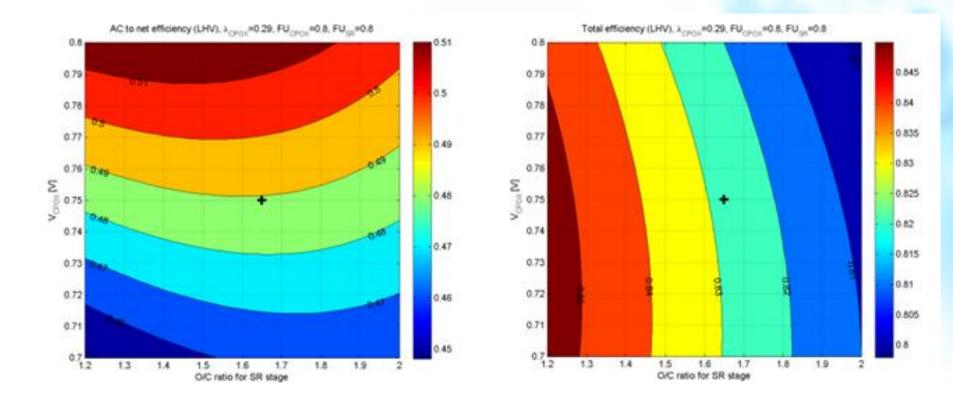
Global positioning vs international state-of the art

Key performance	Unit	Internatio- nal SoA (2012)	Global positioning (FCH-JU target)			
indicator (KPI)			2017	2020	2023	
CAPEX	€/kW	16,000	14,000	12,000	10,000	
Durability	Years of operation	10	12	13	14 97	
Availability	% of the plant	97	97	97		
Electrical efficiency	% _{LHV}	30-60	33-60	35-60	35-60	
Thermal efficiency	% _{LHV}	25-55	25-55	25-55	25-55	
LCOE	€ Ct/kWh	3*grid parity	2.5*grid parity	2*grid parity	<2*grid parity	
Emissions	mg/kWh	NO _x <2 ppm, no SO _x	NOx<2 ppm, no SO _x	NO _x <2 ppm, no SO _x	NO _x <2 ppm, no SO _x	

STAGE SOFC

PROJECT PROGRESS/ACTIONS -Efficiency

	Achievement to-date % stage of implement.	30% 70% 25	25% 50% 75			47% 80	% 45% 80%
	Aspect addressed	Parameter (KPI)	Unit	SoA 2017	FCH JU Targets		
					Call topic	2017	2020
	Efficiency ^(*)	Electrical efficiency	% _{LHV}	30-60	45	33-60	35-60
	Efficiency ^{*)}	Overall efficiency	% _{LHV}	85	80	85	85


STAGE SOFC

Achievements:

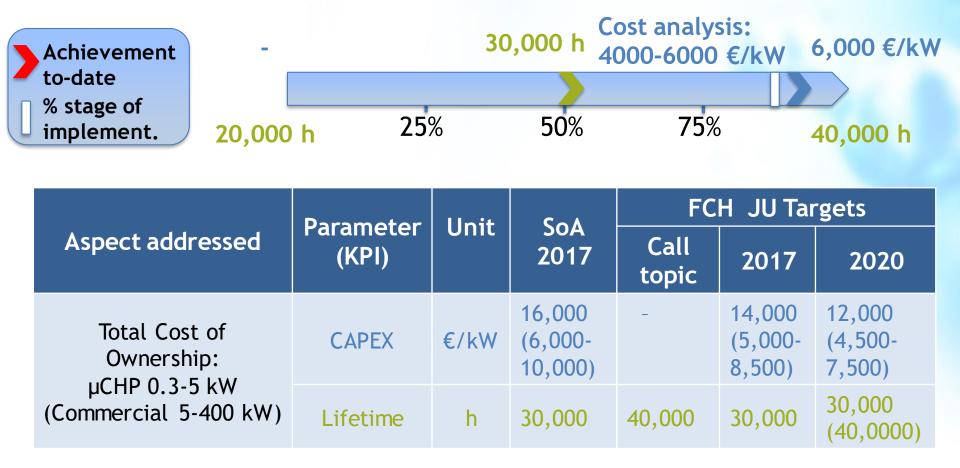
- Confirmation of feasibility of efficiency targets by detailed multi-parameter simulations
- Electrical efficiency proven in initial lab prototype **Future steps:**
- Evaluation of the efficiency curves for the Proof-of-Concept system

*) The overall efficiency is derived form the MAIP 2014-2020 instead of the thermal efficiency

PROJECT PROGRESS/ACTIONS -Efficiency

STAGE SOFC

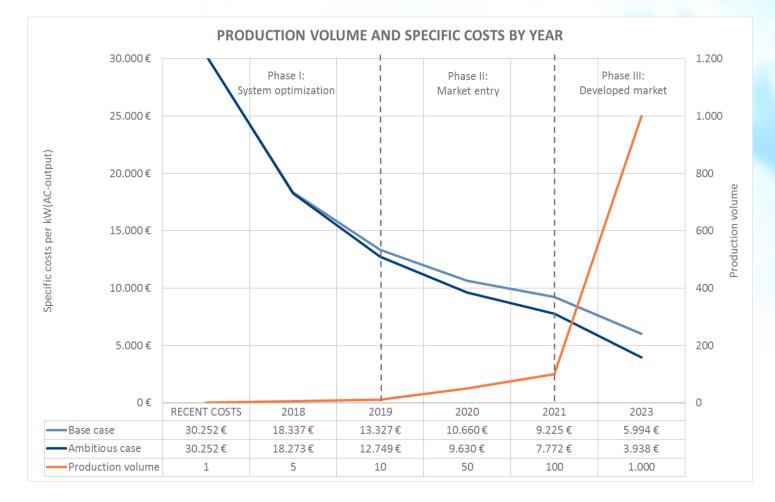
Example of parameter variations in the simulation showing the potentials in electricial (left) and overall (right) efficiencies


PROJECT PROGRESS/ACTIONS -Efficiency

STAGE SOFC

Relationship between electrical efficiency and electrical power output measured in the first lab prototype system

PROJECT PROGRESS/ACTIONS -Total Cost of Ownership



STAGE SOFC

- CAPEX feasibility by detailed cost analysis (+1000 pieces)
- Lifetime proven in µCHP application (with partner Vaillant)

*) Cost targets from MAIP 2014-2020, lifetime from MAIP 2008-2013

PROJECT PROGRESS/ACTIONS -Total Cost of Ownership

STAGE SOFC

Cost analysis of a 5 kW Stage-SOFC based system. Note: increase of power density isn't included.

PROJECT PROGRESS/ACTIONS -Total Cost of Ownership

Stack degradation

- Average degradation rate: 30 mΩcm²/kh (sufficient for > 30,000 h)
- Mid-term target: $15 \text{ m}\Omega \text{cm}^2/\text{kh}$

Stack lifetime

• Proven lifetime: 30,000 h

System lifetime

 Proof-of-Concept system will be tested for at least 3000 h in simulated application environment (ICI lab)

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

- Interactions with projects funded under EU programmes
 - SOFCOM: Techno-economic evaluation of small-scale CHP cases in various EU countries

STAGE SOF

- GrInHy: Development of reformer unit, investigation of carbon formation in reformate
- CoACH: Mechanical analysis of SOC stack, development of glass ceramics for SOC stack
- Interactions with national and international-level projects and initiatives
 - FOSUS (GER): Stack improvement in terms of cost per power and durability, SOEC scale up 5 to 10 times from 5 kW and cost optimization of stack modules

DISSEMINATION ACTIVITIES

Public deliverables

- D1.1: Project Management Guidelines
- D3.1: Report on design and testing of 1st lab prototype
- D7.3: Technical analysis of the various system configurations
- D7.5: Report on potential CO₂ mitigation including streamlined LCA

Conferences/Workshops

- I organised by the project
- 12 oral presentations at conferences
- 15 exhibition stgands Number in which the project has participated (but not organised)

Project Website: <u>http://www.stage-</u> <u>sofc-project.eu</u>

Publications (15 scientific papers):

- J. Kihlman, J. Sucipto, N. Kaisalo, P. Simell, J.Lehtonen, Carbon formation in catalytic steam reforming of natural gas with SOFC anode off-gas, Intern. J. of Hydrogen Energy, 2015, 40, 1548-1558 doi:10.1016/j.ijhydene.2014.11.074
- J. Bachmann, O. Posdziech, P. Pianko-Oprych, N. Kaisalo, J. Pennanen, Development and Testing of Innovative SOFC System Prototype with Staged Stack Connection for Efficient Stationary Power and Heat Generation, ECS Transactions, 2017, 78 (1), 133-144. DOI: 10.1149/07801.0133ecst

Patents: 0

Speaker: Oliver.Posdziech@sunfire.de