BOR4STORE (303428)

Dr. Klaus Taube Helmholtz-Zentrum Geesthacht, Germany http://www.bor4store.eu

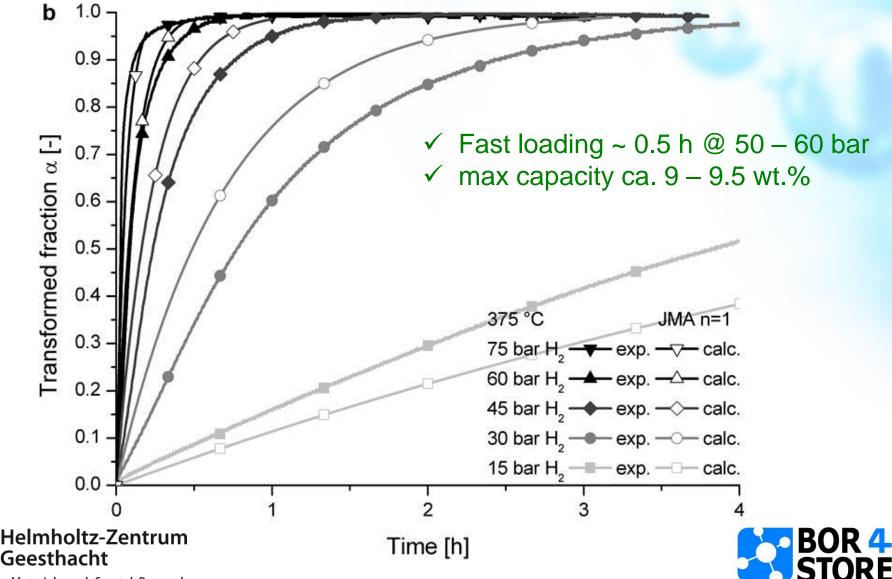
PROJECT OVERVIEW

- Full name: Fast, reliable and cost effective Boron hydride based high capacity solid state storage materials
- Call topic: 2.4: SP1-JTI-FCH.2011.2.4: Novel H2 storage materials for stationary and portable applications
- Runtime: April, 1st, 2012 September, 30, 2015
- Budget: 4.07 Mio.€, FCH JU contribution: 2.274 Mio.€
- Consortium overview

- Purpose:
 - Development of improved solid state based hydrogen storage system (> 4wt.%, > 40 kg H₂/m³)
 - integration with ca. 1 kW SOFC, use of off-heat of SOFC \Rightarrow lab prototype of net independent power supply
- Stage of implementation: 70%

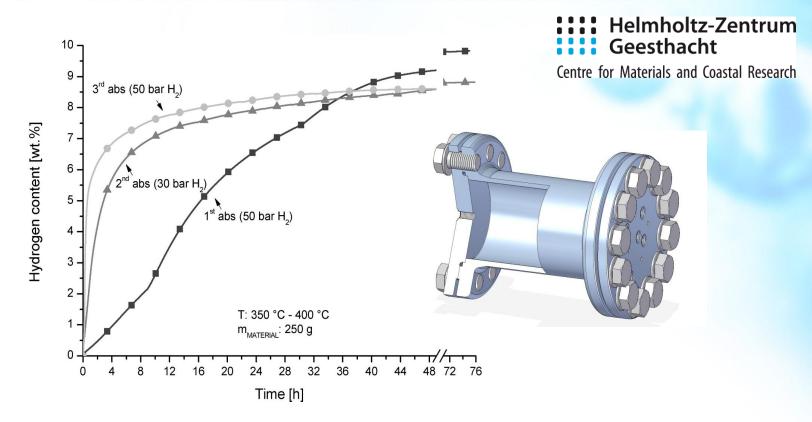
Status before project	MAIP target	Project Target	Current status/ achievements	Expected final achievement
Capacity of several tons of hydrogen (exact number secret) in metal hydride tanks demonstrated in German FC powered submarines before 2010. Cost > 5000 € / kg of stored hydrogen	Potential for cost below 500 €/kg of stored hydrogen	Capacity 1 kg of hydrogen potential for cost below 500 €/kg = 5 M€/t	Materials cost ca. 3,500 – 7,500 €/kg of stored hydrogen Tank system prototype under construction	Use of Mg recycling alloys (waste, 0€) demonstrated. Route for synthesis from Elements under investigation.
50 g of storage material, > 80 kg H ₂ /m ³ > 8 wt.% Cycling stability unknown	Storage materials with capacities ≥ 6 wt.%, ≥ 60 kg H ₂ /m ³	capacities > 80 kg H ₂ /m ³ and > 8 wt.% Loss of capacity <10% over 500 loading cycles	Ca. 100 kg H ₂ /m ³ 9 – 10 wt.% on materials basis < 7% capacity decrease after 1000 cycles (extrapolated in lab sample)	10 kg of storage material with same capacity, < 5% capacity decrease for 500 cycles in tank

Status before project	AIP target	Project Target	Current status/ achievements	Expected final achievement
Release temperature of boron hydrides >350°C	reversibly releasing hydrogen at operating temperatures compatible e.g. with PEM FC, HT PEM FC or SOFC / MCFC	Release temperature ≤ 450°C (compatible with SOFC)	Release temperatures depending on compound 250 – 450°C	Suitable for operation with SOFC
Loading time >> 1 h	appropriate hydrogen loading and unloading kinetics for the envisaged application	Loading time < 1 h	Loading time < 1 h in materials testing, loading time of storage tank tbd.	Loading time < 1 h in storage tank (under construction)
Intermetallic hydride based storage systems >40 kg H ₂ /m ³ < 2 wt.%	Small scale prototype storage systems with significantly improved storage capacity compared to compressed gas storage (≥ 40 kg H ₂ /m ³ , ≥ 4 wt.%,)	Capacity > 40 kg H ₂ /m ³ > 4 wt.%	Storage system under construction	tbd.

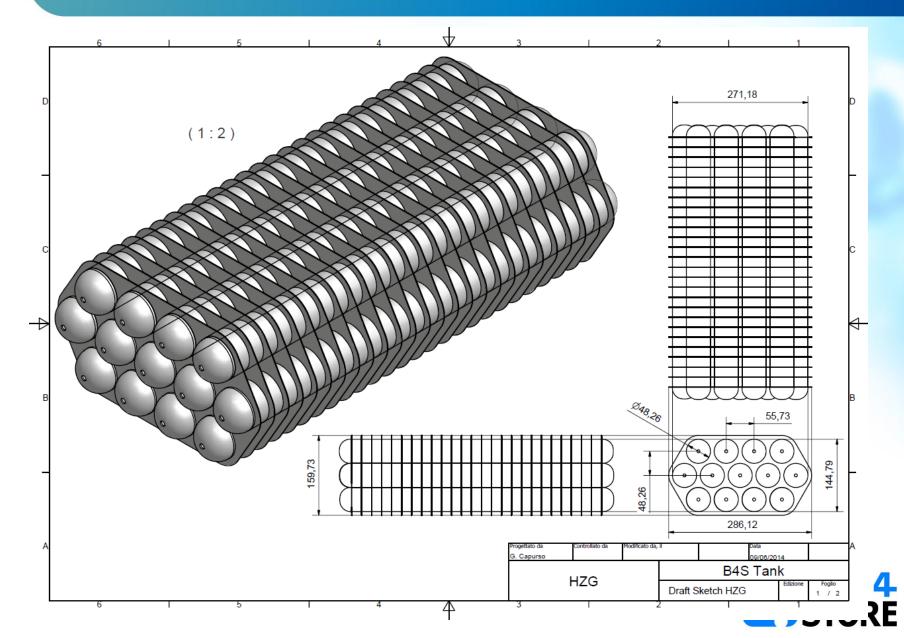

- Scientific understanding of boron based hydrogen storage materials (>8wt.%)
 - reaction mechanisms
 - additives
 - confinement
- Selection of reversible storage material with >80 kg H₂/m³ / >8 wt.% capacity

- Li-RHC (LiH + MgB₂ \Leftrightarrow LiBH₄ + MgH₂)

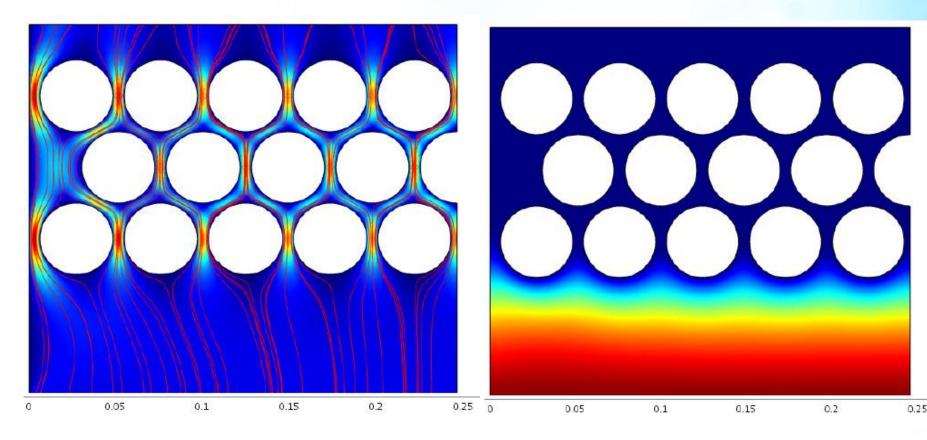
- Routes for cost effective materials synthesis
 - use of waste alloys (e.g. Mg alloy waste)
 - less pure raw materials
 - synthesis from the elements



Loading behaviour of Li-RHC


Centre for Materials and Coastal Research

Li-RHC tank system test



- ✓ First single module high capacity solid state tank based on LiBH₄/MgH₂
- Reversible hydrogen storage capacity of >8.5 wt.% after 3 cycles
- Improved sorption rate and capacity with further increasing number of cycles

Tank Design, first Version

Thermal Coupling / Heat Exchange Medium

Flow Field @ u=0.03m/s

Temperature Field

- Rather homogeneous temperature distribution around tank modules
- Sufficient heat transfer from heat exchange medium to hydrogen storage material for hydrogen release

- Scale-up of materials synthesis to kg scale
- Design of Li-RHC based hydrogen storage tank
- Design of heat exchange with SOFC
- Next steps
 - Construction of integrated SOFC hydrogen storage system including heat exchange
 - System testing (>500 cycles)
 - Techno-economical evaluation

RISKS AND MITIGATION

- Heat transfer between SOFC and storage tank 0.5 kW@350 - 600° C!
 - simulation of heat transfer shows feasibility
 - simulation to be validated in real system
- Final capacity of hydrogen storage tank
 - exact system capacity unknown (under construction)
 - light weight, low volume ⇔ 100 bar H₂ (wall thickness, weight), 600° C (steel strength),
 - compact heat exchange (volume)
 - mitigation
 - Optimise construction with respect to internal pressure and temperature
 - Identification of potentials in tank construction for capacity increase
 - But obey reasonable safety measures

Risks and mitigation

- Cycling stability of storage material
 - so far less than 50 cycles in 250 g of powder material \Rightarrow stable capacity
 - cycling stability should be enhanced by planned pelletizing of storage material (previously shown)
 - possible means of mitigation (after project)
 - further tune reaction paths by additives, pressure and temperatures
 - prevent phase segregation by confinement
- Cost of storage tank and SOFC
 - cost higher than expected in budget estimation
 - mitigation: contribute to project by own ressources of beneficiaries

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- BOR4STORE builds on EU projects
 - STORHY, COSY, NESSHY, FLYHY; exchange with SSH2S
- Joint activities
 - Joint Workshop with SSH2S, EDEN & HYPER projects 10/13
 - Joint Final Event of BOR4STORE, EDEN & HYPER under discussion
 - COST Action MP1103 "Nanostructured materials for solid state hydrogen storage"
 - H2FC infrastructure project
- Interactions with international-level activities
 - BOR4STORE beneficiaries partners of
 - Concert-Japan iTHEUS (Europe Japan)
 - MC ITN ECOSTORE (Europe Japan)
 - HGF-CAS Joint Research Group RevHy (Germany China)
 - 5 groups send experts to IEA HIA Task 32 "Hydrogen based energy storage"

HORIZONTAL ACTIVITIES

- Training and Education:
 - 6 PostDoc or PhD positions
- Safety, Regulations, Codes and Standards
 - Agreement on harmonized materials testing procedures
 - Complete System Design according to international rules for pressurized containers and systems
 - BOR4STORE results could be used for new standard for stationary hydrogen stores based on solid state materials

DISSEMINATION ACTIVITIES

- Dissemination & public awareness
 - Press release upon project start
 - Presentation at N.ERGHY GA, May 2012, Prague
 - Presentations at Int. Conferences (MH2012, Japan, GRC2013, Italy, MH2014, UK)
 - Presentation at FC Expo 2013, Japan
 - Joint SSH2S, BOR4STORE, EDEN & HYPER projects workshop 2.10.2013
 - Joint Public Final Dissemination Workshop, 2015, under discussion
- Publications & patents
 - more than 30 peer reviewed publications so far
 - 1 patent applied for

EXPLOITATION PLAN

- Changes to FCH technology development and/or commercialisation
 - Demonstration of high capacity low pressure hydrogen storage under application relevant conditions (\geq TRL3)
 - Intensive work on lowering cost in hydrogen storage
 - Economical evaluation CAPEX \Leftrightarrow OPEX (no compression, cooling, or liquefaction)
- Planned exploitation
 - Industry partner ZOZ
 - Mechano-chemical processing for cost effective materials synthesis
 - Hydrogen storage tank systems
 - KATCHEM
 - Synthesis of novel boron hydride compounds
 - Abengoa
 - System integration of hydrogen storage with high temperature applications

EXPECTED IMPACT

- demonstration of high capacity, low pressure hydrogen storage & integration with application
 - feasibility of technology
- cost reduction
 - Low cost raw materials and cost effective materials processing, simple tank construction
 - Low pressure storage
 - \Rightarrow no compression, cooling, or liquefaction
 - \Rightarrow no maintenance, no downtimes
 - significant reduction of OPEX in stationary storage (high number of reloading cycles)
- Transfer to industry
 - Guaranteed by 3 industry partners
 - Licensing of technologies dependent on identification of future applications