Urban buses: alternative powertrains for Europe

A fact-based analysis of the role of diesel hybrid, hydrogen fuel cell, trolley and electric powertrains

Rationale: Only through a fuel shift can transport in the EU achieve its target of 95% GHG abatement

It is uncertain if conventional combustion engines will be able to fulfill requirements by a potential EURO VII norm or beyond

	FEURO I	EURO	EURO III	EURO IV	EURO V	EURO VI	EURO VII?	
CO g/kWh							?	
HC g/kWh							?	Will conventional
NO_x g/kWh							?	combustion powertrains be able to achieve a potential EURO VII
PM g/kWh							?	and beyond?
Smoke m ⁻¹	100203 04 05	96 97 98 99	2000.01 02 03 04	05 06 07	08 09 10 11 12	13 14 15 16 1	?	

Result is that European cities focus on getting newest diesel engines until 2015 but, beyond that, seem to demand powertrains with lower emissions

Restrictions on diesel engineNon-fossil powertrain requirements

Amsterdam All buses at least EEV ² norm. Locally only EEV+ buses deploy		BrusselsStockNo procurementRenewof diesel-publicpowered busesonlyfrom 2015onwards		olm ble ¹ ansport
Cologne Only procurement of EEV ² (and better) buses	London All buses meet EUROIV. 300 hybrids in service by 2012YE	Oslo All buses use renewable fuels ¹ . EURO III phased out before 2013	Hamburg Only procurement of emission-free buses	
2005	10	↓ 15 ²	20 20	25

1 Includes biofuels

2 EEV: Enhanced Environmentally friendly Vehicle is a EURO norm in-between EUROV and EUROVI

Source: Roadmap 2050; Dieselnet; Local city websites; 2001/81/EC; team analysis

Operators and policy makers wonder how to balance lower emissions with potentially increased costs and decreased performance

Objectives, approach and scope of the study

Scope

- 8 powertrains
- Standard 12 meter city buses
- Articulated 18 meter buses

Representing ~65% of European bus market

The 'Urban Buses: Alternative Powertrains for Europe' coalition consists of more than 40 companies and organizations

1 Bombardier, Hydrogenics and ABB participate in both the Technology Providers and the Infrastructure working groups SOURCE: FCH JU; McKinsey

Diesel, CNG and diesel hybrids are powertrains in scope which rely (partly) on a conventional engine

Hydrogen fuel cell, trolley and two e-buses are powertrains in scope with zero local emissions

Powertrains were evaluated on three dimensions

Dimension	Main evaluation criteria
Environment	Overall well-to-wheel emissionsLocal emissionsNoise
	Range
Performance	Route flexibility/free rangeRefueling time
	 Acceleration
Total Cost of Ownership (TCO)	Purchase and financing costsRunning costsInfrastructure costs

Powertrains were evaluated on three dimensions

Dimension	Main evaluation criteria		
Environment	Overall well-to-wheel emissionsLocal emissionsNoise		
Performance	 Range Route flexibility/free range Refueling time 		
	 Acceleration 		
Total Cost of Ownership (TCO)	Purchase and financing costsRunning costsInfrastructure costs		

Only the hydrogen, e-bus and trolley buses have the potential to drastically reduce well-to-wheel emissions...

...and only the hydrogen, e-bus and trolley buses can achieve zero local emissions

Perceived noise of a fuel cell hybrid is more than 3x lower than that of a conventional diesel

1 No measure figures available yet – expectations are similar to hydrogen fuel cell bus SOURCE: Study analysis

Powertrains were evaluated on three dimensions

Dimension	Main evaluation criteria
Environment	Overall well-to-wheel emissionsLocal emissionsNoise
Performance	 Range Route flexibility/free range Refueling time
	 Acceleration
Total Cost of Ownership (TCO)	Purchase and financing costsRunning costsInfrastructure costs

Performance of the hydrogen bus is similar to conventional powertrains

¹ Typical values shown here – pure electric range of hybrid powertrains varies depending on concept of auxiliary units and battery capacity 2 Based on a 60 kWh battery and a consumption (including losses from charging) of 2 kWh/km

SOURCE: Study analysis

Powertrains were evaluated on three dimensions

Dimension	Main evaluation criteria
Environment	Overall well-to-wheel emissionsLocal emissionsNoise
Performance	 Range Route flexibility/free range Refueling time Acceleration
Total Cost of	 Purchase and financing costs
Ownership (TCO)	Running costsInfrastructure costs

The price premium for a hydrogen fuel cell bus will decrease from 125% to only 15-25%

1 Based on 12 years bus lifetime, 60,000 km annual mileage 2 Includes purchase price of more than 1 bus per daily shift as bus maximum mileage too short for full operational day 3 Theoretical value based on estimations as powertrain not in production yet in 2012

4 Includes cost for additional bus and driver per fleet of 9 buses to cover charging times at end of route for 2012

SOURCE: Study analysis

The hydrogen fuel cell bus is the only articulated bus expected to decrease in TCO until 2030

1 Based on 12 years' bus lifetime, 60,000 km annual mileage SOURCE: Study analysis

The cost premium for a hydrogen zero-local emission bus can be lower than 20% by 2030

The powertrains were assessed on three dimensions: environment, performance and total cost of ownership (TCO)

PRODUCTION-AT-SCALE SCENARIO 12 M BUS 2030

For the powertrains based on a combustion engine, the hybrids outperform the standard combustion engines

Only four powertrains can deliver a real decarbonisation; among those four, two are the cheapest

1 Total cost of ownership for a 12m bus including purchase, running and financing costs based on 60,000km annual mileage and 12 years bus lifetime

2 Total CO₂e emissions per bus per km for different fuel types from well-to-wheel

3 Electricity cost for e-bus and water electrolysis part of hydrogen production based on renewable electricity price with a premium of EUR50/MWh over normal electricity

SOURCE: Study analysis

Thank you for your attention!

Questions?

Contents

Upside potential and risks

Backup to main presentation

Further upside potential for zero local-emission powertrains is possible

	Positive external factor	Base case assumption
Cost of fossil fuels	A Crude oil price USD 150/bbl in 2030	Crude oil price USD 125/bbl
Taxation on fuel and emissions	B1 Variable taxes	Taxes fixed to 2012 values
	B2 Taxes on CO ₂ (EUR 30/tonne)	No taxes on CO ₂
Component costs	C1 Lower fuel cell stack cost: EUR 34/kW	EUR 114/kW
	C2 Lower battery cost: EUR 258/kWh	EUR 459/kW
Hydrogen and electricity	D1 H ₂ from SMR with CCS	H ₂ from a balanced mix of major technologies
production	D2 H_2 from WE incl. PEM	
	D3 Electricity from EU mix	Electricity from renewable sources

Total upside potential of the hydrogen fuel cell bus is 25 EURc/km cheaper than the conventional diesel; for the opportunity e-bus, this is 14 EURc/km

1 Effect already included in ranges shown in slide 16

SOURCE: Study analysis

However, we should also be aware of the possible limit and risks for zero-emission powertrains

	Negative external factor	Base case assumption
Cost of fossil fuels	E Crude oil price USD 90/bbl in 2030	Crude oil price USD 125/bbl
Taxation on fuel and emissions	 F Taxation as in Directive 2003/96/EC Diesel: EUR 0.4/litre CNG: EUR 0.5/kg Hydrogen: EUR 1.2/kg Electricity: EUR 35/MWh 	Diesel: EUR 0.49/litre CNG: EUR 0.21/kg Hydrogen: Electricity:
Component costs	G Doubling of infrastructure investment for e-bus	

The limitations could further increase the TCO gap with conventional diesel busses in 2030

Contents

- Upside potential and risks
- Backup to main presentation

Energy consumption of zero-local emission powertrains is better than that of conventional powertrains

1 Powertrain energy consumption only; does not include losses in charging or losses in the production and distribution of the fuel and electricity SOURCE: Study analysis

At the same time, concerns about public well-being drive further tightening of regulations for other emissions

EURO emission norms

Result is that European cities focus on getting newest diesel engines until 2015, but beyond that, seem to demand alternative powertrains

NOT EXHAUSTIVE

In addition, many cities focus on other measures to adhere to EU regulation on air quality:

- Expanding and optimising public transport in general
- Banning cars from city centres
- Promoting electric cars

1 Includes biofuels

2 EEV: Enhanced Environmentally friendly Vehicle is a EURO norm in-between EUROV and EUROVI

SOURCE: Local city websites; 2001/81/EC

The study covers ~65% of the European city bus market by focusing on standard city and articulated buses

2010 European urban bus market segments¹ Number of annual registrations, Western Europe

	Scope of study 7,500	2,800	2,500	1,500	2,000	16,300	•
			Does not include	coaches (~7,000)			65%
Markot	Standard bus, city	Articulated bus	Standard bus, overland	Double- decker bus	Midibus	Total	
EUR millions	~1,800 ²	~1,000 ²	~600 ²	~600 ²	~360 ²	~4,360 ²	
	 ~12 metres ~18 tonnes 200 to 150 kW ~40 passengers seated, up to 70 passengers unseated Low entry 	 18 to 20 metres⁴ Up to 30 tonnes 230 to 280 kW Up to 70 passengers seated Up to 100 passengers 	 ~12 metres ~18 tonnes 200 to 250 kW ~50 passengers seated Up to 30 passengers unseated 	12 to 14 metres Up to 30 tonnes >230 kW ~80 passengers seated ~40 passengers unseated	 8 to 10.5 metres Up to 18 tonnes 200 to 250 kW 20 to 30 passengers seated ~35 passengers unseated 		
	,	unseated	 Technically close to city bus 	very big cities			

1 Split based on 2010 registrations for UK, FRA, IT, ESP; total number of registrations in Europe via extrapolation based on population size (Europe vs. UK, FRA, IT, ESP together); coaches not taken into account

2 Based on the estimated numbers above and estimated average prices

3 Figures for midibus, standard bus and articulated bus based on estimations by study participants

4 Sometimes more e.g. double articulated buses

SOURCE: Truck & Bus Builder Reports Ltd., SMMT, AAA, UNRAE, IEA, VDV, OEM publications, Study analysis

Different degrees of experience with novel technologies imply different levels of data certainty

	Diesel/ CNG/Trolley	Diesel hybrids ¹	Hydrogen fuel cell bus	Opportunity e-bus	Overnight e-bus ³
Number of buses deployed		> 1,000	> 30	0 ³	04
Number of kilometres driven	Diesel, CNG and trolley buses are	>> 10,000,000	> 1,000,000 (> 5,000,000) ²	0 ³	04
Recharging/ refuelling proced- ures completed	considered fully mature as they have been in use for >50 years and	Same as diesel	> 500	0 ³	04
Number of years in operation	cover >95% of the current market (for 12 m and 18 m	~2-3 years	~ 2 years	 No operation yet for ~2 years for 8 m or 	or 12 m/18 m buses vernight e-buses
Supply industry/ adjacent industries	buses)	 Battery Electric drives 	 Fuel cell in automotive H₂ supply Battery, electric drives 	 Infrastructure Battery Electric drives 	 Infrastructure Battery Electric drives

Data on all powertrains to be treated with appropriate caution as

- Data on hydrogen fuel cell bus are based on real-life operations (12 m or 18 m buses) in small-scale fleets with a timeframe of a few years
- Data on electric buses (opportunity and overnight e-buses) are based on clean team data for the core components, diesel serial hybrid clean team data for other components and expert estimates for the remaining parts as no information from actual operation of 12 m or 18 m buses was available
- Data on hybrids are based on a few years of experience only despite large number of buses

3 An estimated 20-30 8-9 meter opportunity e-buses, some or all from Chinese manufacturers, operate in Turin, Genoa, Coventry and are ordered in Vienna

4 A number of European cities operate or have ordered models by Chinese manufacturers; number of European-made busses is unknown

SOURCE: Study analysis

¹ Latest generation serial hybrid and parallel hybrid 2 For all hydrogen fuel cell buses (without hybridisation of powertrain)

On a per passenger-km basis, hydrogen fuel cell articulated is the cheapest zero local-emission options by 2030

1 Total cost of ownership for a bus, including purchase, running and financing costs based on 60,000 km annual mileage and 12 years' bus lifetime 2 Total CO2e emissions per bus per km for different fuel types from well-to-wheel 3 For greenest option, electricity cost for e-bus and water electrolysis hydrogen production based on renewable electricity price with a premium of EUR50/MWh over normal electricity 4 Passenger loading 47 per standard bus, 73 per articulated bus as per UITP definition

Opportunity charging e-bus offers the cheapest GHG abatement of zerolocal emission powertrains; diesel parallel hybrid the cheapest overall

12 M BUS 2030 **GHG** emissions **GHG** abatement g CO₂e/km TCO delta Emissions TCO¹ to diesel¹ delta to diesel cost, well-to-wheel¹ Well-to-tank EUR/km EUR/kg CO2e EUR/km g CO₂e/km Tank-to-wheel Diesel 2.5 218 .005 1.222 CNG 2.6 157 1.014 1.171 0.1 51 0.6 **Diesel parallel** 0.1-2.6 188 1.058 0.1 164 869 hybrid 0.2 **Diesel serial** 2.6-0.4-0.1-0.2 172 796 968 254 hybrid 2.7 0.5 Hydrogen 0.5-3.0-0.5-306 916 fuel cell 3.2 0.7 0.7 Trolley 0.7 3.4 2 0.9 1,220 Opportunity 2.8-0.3 2 0.3 1,220 e-bus 2.9 Overnight 3.4-0.9-0.7-2 1,220 e-bus 3.8 1.3 1.0

With an even more renewable hydrogen production mix, further upside can be achieved

1 Lower numbers correspond to 'cross-industry' scenario with cheapest H₂ and electricity production mix, higher numbers to 'production-at-scale' scenario with green H₂ and electricity

2 Taking the upside potential and potential limitations into account (see Chapters 4 & 5), GHG abatement costs for hydrogen fuel cell bus and opportunity e-bus could become lower than EUR 0.1/kg CO2e or increase to more than EUR 1.0/kg CO2e

SOURCE: Study analysis

The city bus shows less abatement cost per passenger km than passenger car with 0.1 EUR/gCO₂e vs. 0.8 EUR/gCO₂e

1 No CO2 price included in TCO

2 HEV as conventional powertrain, PHEV as cheapest alternative; assuming average passenger car loading factor of 1.2 passengers per car

3 Diesel as conventional powertrain, parallel hybrid as alternative powertrain; assuming 12 m bus with 47 passengers according to UITP definition

4 Compact-class car (C-segment)

SOURCE: Study analysis

Powertrains with zero local-emissions also have lowest noise emissions

Noise (standing) Noise (pass-by) dB dB Diesel 80 77 Conventional CNG 78 75 75 77 Parallel Diesel parallel hybrid hybrid 69 73 Diesel serial hybrid 63 69 Hydrogen fuel cell -17dB -8dB <63 72 Trolley **Serial** electric n/a^1 **Opportunity e-bus** n/a^1 Overnight e-bus n/a¹ n/a¹ Note that dB-scale is not linear - perception of noise: -10dB: Noise is halved -20dB: Noise is quartered

1 No measure figures available yet - expectations are similar to hydrogen fuel cell bus

SOURCE: Study analysis

12 M BUS

Overview of total cost of ownership (TCO) components

Based on Enerdata's Recovery scenario, the following prices are used in the study

European average energy prices, 2011 real terms

1 Based on weighted industrial average prices (excl. VAT) in Belgium, France, Germany, Italy, Netherlands, Spain and UK 2 Based on historical industrial pellet prices in the Netherlands, Germany and Sweden

SOURCE: Enerdata Recovery Scenario 2011, industry analysis

Based on Enerdata's Recovery scenario, the following fuel prices used in the study

European average industrial prices¹ w/o VAT, 2011 real terms

1 Based on weighted (by population) industrial average prices (excl. retail mark-up) in Belgium, France, Germany, Italy, Netherlands, Spain and UK 2 Diesel price based on fix mark-up on oil price, incl. distribution costs to filling station, no retail mark-up

SOURCE: Enerdata Recovery Scenario 2011, European Commission Oil Bulletin 2012, Platts, Bloomberg, study analysis

The Coalition defined reference buses specified by a list of parameters

Reference vehicle specifics	Standard bus ²	Articulated bus
Typical number of passengers (seated/standing) ¹	32/68	43/90
Length in m	11.8 - 12.2	17.7 - 18.3
Height in m	2.9 - 3.1	2.9 - 3.1
Width in m	2.50 - 2.55	2.50 - 2.55
Empty weight in tonnes	11 - 12	16 - 18
Curb weight in tonnes	18 - 19	28 - 29
Traction power in kW	170 - 220	200 - 260
Number of doors	2/3	3
Floor type	Low floor	Low floor
Safety requirements	 EU standard/E 	CE standard
Other specifications	 Typical equipment incl. air- conditioning and heating Single-walled windows 	

1 Actual capacity dependent on customer requirements

2 Includes modified version to cover suburban routes

Expected development of the European urban bus market

Ramp-up towards mix in 2030

1 Including margins and cost of distribution SOURCE: Study analysis

For ten different production methods data was collected in the Clean Team

Technology	Process	Governing reaction ¹	Variations
SMR Steam Methane Reforming	Methane \rightarrow H_2 Steam \rightarrow CO_2	CH_4 + 2 H_2O → 4 H_2 + CO_2	 On-site SMR Central SMR Central SMR + CCS
WE Water Electrolysis	Water \rightarrow H_2 Electricity \rightarrow O_2	$2H_2O \rightarrow 2H_2 + O_2$	On-site WECentral WE
CG/(IGCC) Coal Gasification/ Internal Gasification Combined Cycle	$\begin{array}{c} \text{Coal} \longrightarrow & H_2 \\ & & & \\ \text{Steam} \longrightarrow & \text{CO}_2 \end{array}$	C + 2H ₂ O → CO ₂ + 2H ₂	 CG CG + CCS IGCC IGCC + CCS
BG Biomass Gasification	Biomass \rightarrow H_2 Steam \rightarrow CO_2	$C_xH_yO_z + H_2O \rightarrow CO_2 + H_2$	• BG

Effects of the 'production-at-scale' and 'cross-industry' scenario add up to a reduction of 45% compared to the niche scenario, 2030

Purchase cost hydrogen fuel cell bus, 12 m bus EUR thousands

- Volume effect of production-at-scale scenario vs. niche scenario leads to reduction in purchase price of 28%
- Additional cross-industry effects from car industry on fuel cell system components and battery yields total cost reduction of ~45%

Trolley has highest infrastructure cost; diesel and hybrids have cheapest infrastructure to install

				Capex	Opex 2030 Medium depot
		Description	Investment required ³ EUR thousands	Total yearly cost¹ EUR thousands/year	x.xx EUR/bus km ²
Conven- tional	Diesel	Filling station with 4 dispensers	324	¹³³ 26	0.03
	CNG	Fast-filling station	3,194	493 256 749	0.15
Parallel hybrid	Diesel parallel hybrid	Filling station with 4 dispensers	324	¹³³ 26	0.03
Serial electric	Diesel serial hybrid	Filling station with 4 dispensers	324	133 26 159	0.03
	Hydrogen fuel cell	Medium-size gaseous 500-bar station	3,753	345 301 646	0.13
	Trolley	Overhead wiring, transformers, ~85 km network	38,250	3,069 // 1,199 4,26	0.84
	Opportunity e-bus	~8-9 routes equipped with 2 charging poles each	7,333	588 465 1,053	0.21
	Overnight e-bus	85 charging spots within depot	3,490	349 280 629	0.12

1 Based on WACC of 5% and 20 years' lifetime

2 Based on 85 buses and 60,000 km/year

3 Not including infrastructure required to produce or transport fuel to the depot (e.g. pipeline)

SOURCE: Study analysis, EUCAR/CONCAWE/EC JRC 2011

BACKUP

For the powertrains based on a combustions engine, the hybrids outperform the standard combustion engines

The alternative powertrains all score high on environment and have mixed results on performance and TCO

