Material Testing and Recommendations for H₂ Components under Fatigue (GA 303422)

Laurent Briottet CEA / LITEN (French Atomic and Alternative Energy Commission) www.mathryce.eu

PROJECT OVERVIEW

- SP1-JTI-FCH.2011.2.8 Pre-normative research on design and testing requirements for metallic components exposed to H₂ enhanced fatigue
- October 1, 2012 to September 30, 2015
- Budget: Total budget 2,492,937€
 FCH JU contribution 1,296,279€

Tenaris AIR LIQUIDE

To provide **recommendations** and a **methodology** based on **labscale experimental tests** to design and assess the **life of a pressure vessel** taking into account **fatigue loading under** H₂ **gas**

• Stage of implementation 100%

Programme objective/target	Project objective/target	Project achievements to-date	Expected final achievement			
MAIP						
"Removal of non-technical market barriers particularly through the development of RCS"	To propose a design methodology Recommendations for implementation in international standards.	100 A methodology and have been presente and to EN) % I recommendations ed to ISO/CD 19884 I 13445-3			

Programme objective/target	Project objective/target	Project achievements to-date	Expected final achievement				
AIP							
Design code for pressure equipment in hydrogen service	To provide recommendations to improve design standards or codes	10 Recommendations of and on	0% on ISO/CD 19884 ASME KD10 article				
Metallic material characterization for hydrogen service	Lab-scale tests developments	 100% Three type of tests have been used Data for only one material AISI 4130 Results on FCI as well as on FCG 					
Experimental implementation of design approach and design testing approach	Development of methodology based on lab-scale tests	 A methodology h based on H₂ sens 2 test methods a evaluate this HSF 	0% ave been proposed itivity factor (HSF) re proposed to				

Use of Fracture Mechanics

RISKS AND MITIGATION

The obtained results should still be checked and updated for the following cases:

- High H₂ pressure
- Low ΔK
- R effect
- Data base for other materials

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- Several partners involved in the following projects : *HyComp, HyIndoor, HyTransfer* dedicated to Hydrogen structural integrities or Prenormative research
- Two letters of interest from Sandia National Laboratory (USA) and Hydrogenius (Japan)
- Prof Murakami (Hydrogenius) and Somerday (SNL) attended technical meeting
- Mathryce invited in forums and workshops organised by SNL and Hydrogenius
- SNL and Hydrogenius experts invited to Mathryce workshop
- SNL is performing Crack Initiation tests at 1000 bar H₂

HORIZONTAL ACTIVITIES

- Several partners are involved in RCS working groups. In particular, ISO/TC 58/ WG 7 dedicated to Gas cylinders - Compatibility between gases and materials
- 2 Workshops organised by the project
- Recommendations and methodology presented to CEN and ISO experts
- Recommendations and methodology presented during an ISO/TC197 WG15 meeting

DISSEMINATION ACTIVITIES

H ₂ testing workshop	USA	04/13	Testing device under H ₂
H ₂ design code workshop	USA	07/14	Mathryce approach for RTD
Materials Qualification for H ₂	USA	07/15	Testing and fatigue assessment
1 st Mathryce Workshop	Paris	Sept 18, 2015	H ₂ enhanced Fatigue
2 nd Mathryce workshop	Paris	Sept 21, 2015	Recommendations (ISO, CEN)

Int. H ₂ forum	Japan	2013-2015	Mathryce project
ICHS 2013	Belgium	2013	Mathryce project
Steel & Hydrogen 2014	Belgium	2014	Fatigue experimental dvpts
ASME PVP 2014	USA	2014	H ₂ enhanced fatigue
HY-Storage, Embrittlement, Applications	Brazil	2014	 - H₂ enhanced fatigue - Comparison of existing standards
ASME PVP 2015	USA	2015	Fatigue and full scale tests under H ₂

Briottet L. et al., *Fatigue crack initiation and growth in a CrMo steel under hydrogen pressure*, Int. J. of Hydrogen Energy, 2015, in Press.

EXPLOITATION PLAN/EXPECTED IMPACT

- Increase of knowledge on metal/hydrogen/fatigue interactions, including fatigue crack initiation.
- Experimental developments to address hydrogen enhanced fatigue.
- A design code dedicated to pressure vessel design including rules for hydrogen enhanced fatigue is necessary to ensure safety and facilitate competitive development of dedicated infrastructures. Particular concern: H₂ buffer vessels (p ≥ 850 bar, public access)
- Cross-cutting:
 - After presentation to ISO TC197 WG15 \rightarrow some recommendations may be included in the current standard draft
 - Need for additional data at low ΔK , at high P
 - Need for additional work to improve FCI characterization under H_2
 - \rightarrow Common interest with USA and Japan