

SSH2S (256653) Fuel Cell Coupled Solid State Hydrogen Storage Tank

Marcello Baricco

SSH2S Coordinator Università di Torino <u>marcello.baricco@unito.it</u>

SSH2S in figure

Beginning: Feb. 1st, <mark>2011</mark>

H₂

End: Sept. 30th, <mark>2014</mark>

Duration: <mark>42</mark> months

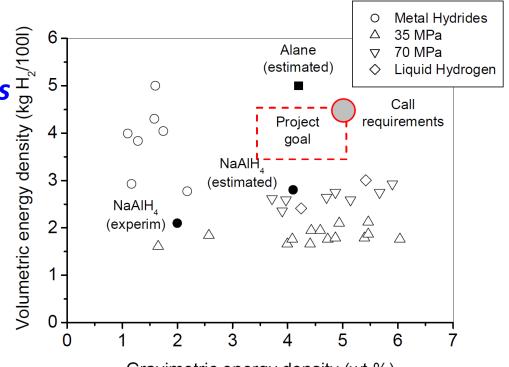

Budget: 3.5 M€ Total 1.6 M€ JU contribution

Partners: 4 research + JRC 3 industries

Beneficiary Number *	Beneficiary name	Beneficiary short name	Country
1. (Coordinator)	Università di Torino	UNITO	Italy ,
2. IF2	Institute for Energy Technology	IFE	Norway
3. SKIT	Karlsruhe Institute of Technology	KIT	Germany
4. DLR	Deutsches Zentrum für Luft- und Raumfahrt e.V.	DLR	Germany
5. TECNO	Tecnodelta s.r.l.	TD	Italy
6. Sertenergy	Serenergy A/S	SER	Denmark
7.	Centro Ricerche Fiat	CRF	Italy
8. JRC	Joint Research Centre of European Commission	JRC	Belgium

SSH2S in picture

SSH2S goals



•Integration between hydrogen storage system and HT-PEM fuel cell

Development of new materials with high gravimetric and volumetric energy density
Technically relevant loading temperature and pressure
Loading time and stability of performances after several cycles

•New tank for supply of hydrogen flow.

•Low cost

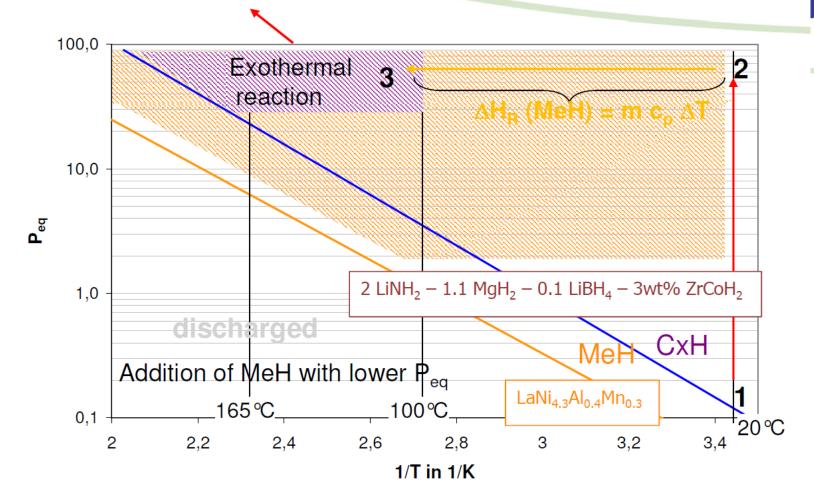
Gravimetric energy density (wt %)

Volumetric and gravimetric energy density of hydrogen storage systems

SSH2S challenges

Design, synthesis and physicochemical characterization, of existing and novel materials for solid state hydrogen storage.
New two-materials concept for the tank, combining bydrogon corntion

tank, combining hydrogen sorption properties of complex hydrides and metal hydrides.


Development of a prototype tank.
Integration of materials/tank systems with HT-PEM Fuel Cell (1 kWel).
Application of the integrated system as APU for a LTV.

Lab-scale tank

SSH2S Combo concept

Concept of reactor based on «double material»

SSH2S expected results

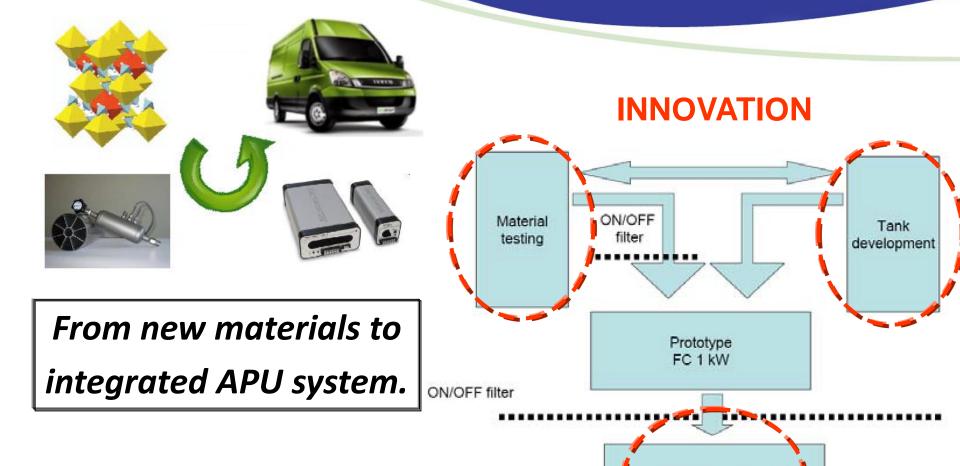
•An up-scaled production of a material with capacities of up to 4.5 H₂ wt%, fully reversible at 180 °C.

High stability on cycling.
New concepts on the coupling of solid state hydrogen tank with HT-PEM fuel cells.

•Development of a prototype 1

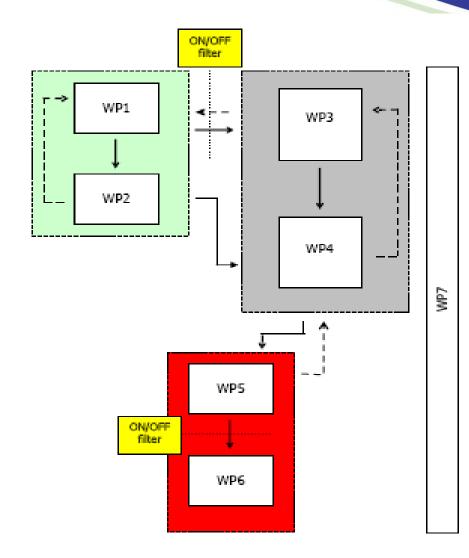
kW integrated system

•*Possible application to a 5 kW APU*.


•Business opportunities for MSE.

Selected Full Electric Vehicle for APU

SSH2S scheme


Car APU application

H₂

SSH2S workplan

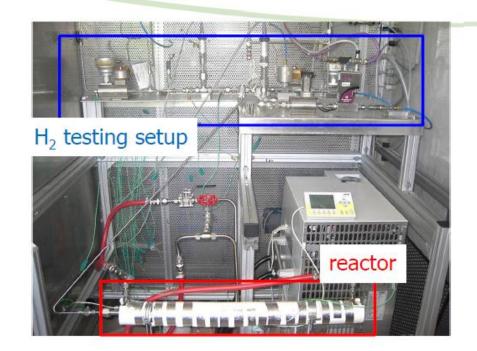
WP	Title	Туре	Leader
1	Material Design and Synthesis	RTD	KIT
2	Materials Characterisation	RTD	IFE
3	Lab-scale Tank Development	RTD	DLR
4	Fabrication and Testing of Prototype Tank	RTD	TD
5	Tank-FC integration (1 kW _{el})	RTD	SER
6	Final User Test	DEM	CRF
7	Management	MGT	UNITO

SSH2S WP1-2 results

 The role of additives on the Li-Mg amide systems have been explored.

 H_2

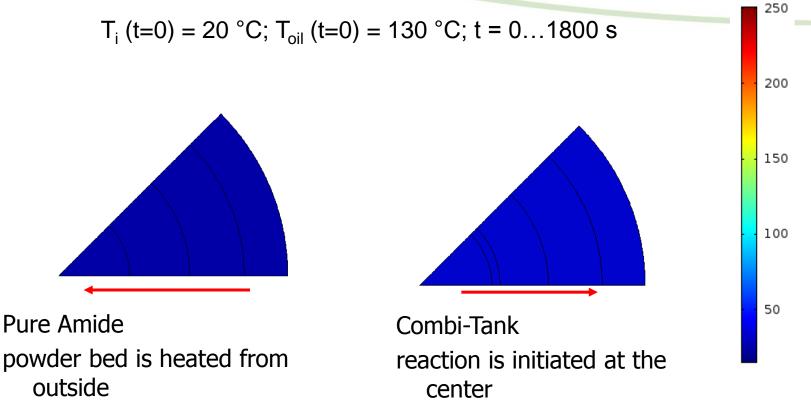
- 2 LiNH₂ + 1.1 MgH₂ + 0.1 LiBH₄ + 3wt% ZrCoH₃ has been selected and prepared in up-scaling conditions.
- A batch of 3 kg of complex hydride has been made available.
- A maximum 4.5 wt% gravimetric density has been obtained, with good cyclability.
- Li-Mg amide systems have been shown to be suitable for the development of the hydrogen tank.



Vibrational ball mill for large scale preparation

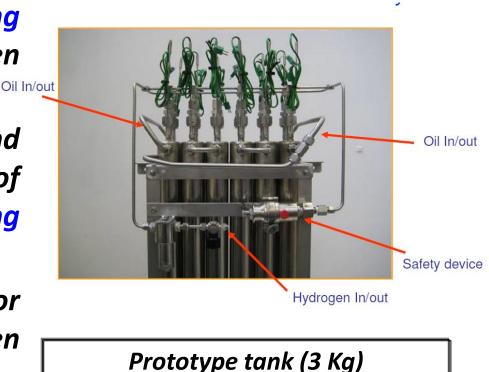
SSH2S WP3 results

- Experiments and calculations on double materials concept have demonstrated a significant synergic effect.
- Extended equations for thermo-fuid-dynamic modelling have been set up.
- Two different lab scale tanks have been designed and put in operation to test different combination of mixed materials.



Testing setup with integrated tank (600 g)

SSH2S Combo simulation


temperature

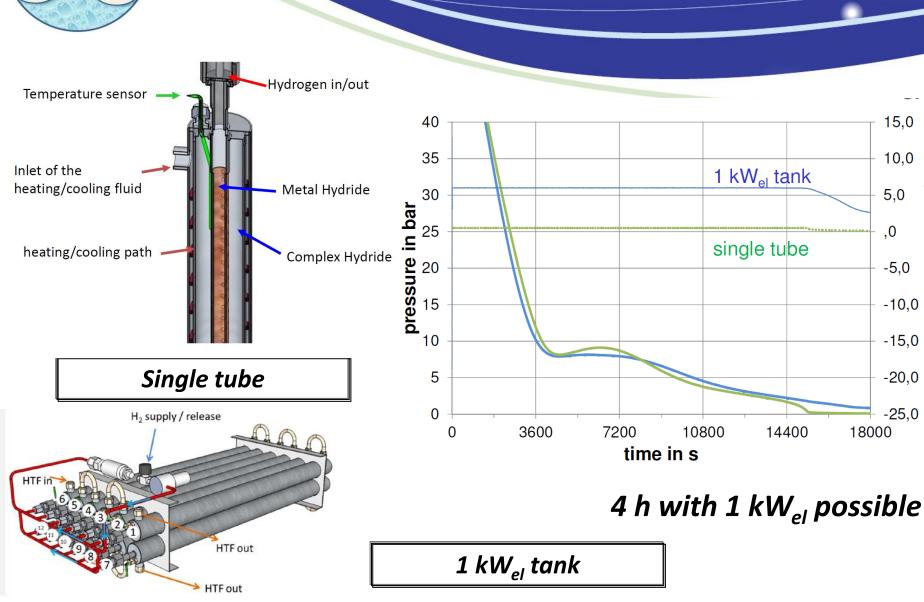
SH2S

SSH2S WP4 results

- A prototype tank have been developed.
- On basis of thermo-fuid-dynamic simulations, a detailed drawing of the hydrogen tank has been prepared.
- A glove-box has been set-up and it is ready for the fabrication of the tank. Preliminary welding tests have been performed.
- A complete report on safety for the hydrogen tank has been produced.

SSH2S Combo results

15,0

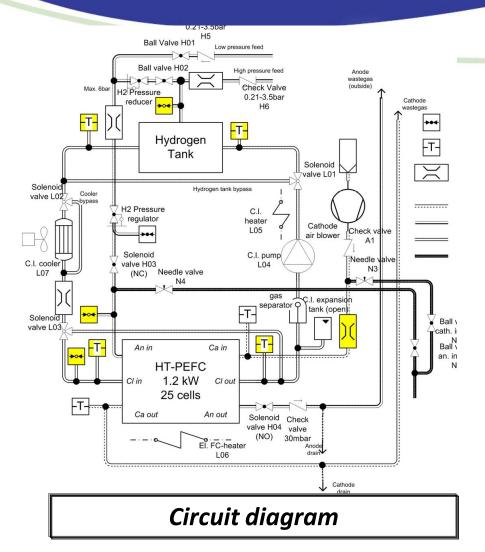

10,0

5,0 ,0 -5,0 -10,0 -15,0

-20,0

-25,0

18000


 H_2

SSH2S WP5 results

 H_2

- Requirements have been defined, as a starting point for further developments.
- **BoP** for the integrated 1 kW system has been defined.
- Preliminary tests on fuel cell stack and components have been performed.

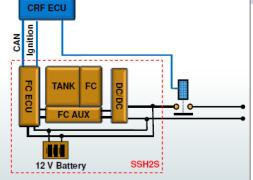
SSH2S WP6 plans

• The APU will be installed inside the vehicle

 H_2

- Safety issues are under investigation (e.g. hydrogen sensor).
- LCA analysis is planned.
- Techno-economical evaluation is planned.

Load area of LTV

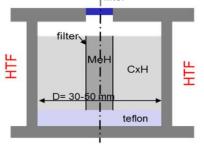


SSH2S vs MAIP/AIP

AA 2: Hydrogen Production, Storage & Distribution

MAIP/AIP targets	Project goal	Project status	Gaps bottlenecks in RTD
Long-term and break-through oriented research on improved solid state hydrogen storage options for increased efficiency and storage capability, i.e. 2nd generation hydrogen storage	Integrated system to be demonstrated in a prototype APU system (1 kW) and possibily in	Architecture under development. Good material properties	Intrinsic properties of materials not yet optimized
technology.	(5 kW)	CRF ECU Iduition	···

Architecture for Daily Electric



SSH2S vs MAIP/AIP

AA 2: Hydrogen Production, Storage & Distribution

MAIP/AIP targets	Project goal	Project status	Gaps bottlenecks in RTD
Storage materials with capacities ≥ 6 wt.%, ≥ 60 kg H ₂ /m ³ reversibly releasing hydrogen at operating temperatures compatible e.g. with PEM FC, HT PEM FC or SOFC / MCFC	Approx. 5 wt% H ₂ (amides) 7-11 wt% wt% H ₂ (mixed borohydrides) Double materials concept	Storage materials with capacities up to 4.5 wt% H ₂ Reversibility at 180 ° C Single reaction step Stability on cycling Stop for mixed	Lack of reversibility in new developed materials
		borohydrides	filter

Double Materials concept

SSH2S vs MAIP/AIP

AA 2: Hydrogen Production, Storage & Distribution

MAIP/AIP targets	Project goal	Project status	Gaps bottlenecks in RTD
Improved system density for H ₂ storage (2015: 9 %wt of H ₂)	4 wt% of H ₂ 40 kg H ₂ /m ³ Close to room temperature and pressure	Not yet available Gravimetric density likely lower than goal Volumetric density likely OK	High gravimetric density material with suitable properties not yet available
Cost effective production routes of the materials	< 1250 €/kg H2	Not yet available, but higher than goal	Low production for limited market

HT-PEM for integrated system

SSH2S dissemination

- Workshop of FCH-JU projects on hydrogen storage -BOR4STORE, EDEN, HYPER, SSH2S - Oct. 2nd, 2013 in Tenerife (Spain).
- Main topics discussed are the following:
 - Materials for solid-state hydrogen storage
 - Hydrogen tanks based on solid-state materials
 - Integration of solid-state hydrogen tanks with fuel cells
 - Final use and applications
- Workshop of FCH projects related to APU in Torino (Italy) as a final event of the project (i.e. June 2014). DESTA and FCGEN agreed to join the meeting.
- Publications and conferences.

SSH2S cross cutting issues

 Training: 3 PhD student and 5 PostDocs involved *in the projec* •Website www.ssh2s.eu Post-project activities to be defined Connections with national and international hydrogen projects and organizations

acknowledgments

Thank you for your attention

EUROPEAN COMMISSION

Karlsruhe Institute of Technology

