

Hydrogen for Sectoral Integration

Nikolaos Lymperopoulos

PRD 2019 19th November 2019

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Hydrogen Production, Distribution & Storage Technical Coverage

95% of FCH JU support to green Hydrogen production

Early H₂ Production: a facilitator of FCs in Transport and Energy

P2P & FCEVs + "Where will the Hydrogen come from?

Today's H₂ Production: enabler of Sectorial integration

Hydrogen for Sectorial Integration

Well-positioned FCH JU objectives & budget

Increase efficiency and reduce costs of H₂ production, mainly from water electrolysis and renewables

M£

110

Related FCH JU Objectives

Demonstrate on a large scale H₂'s capacity to harness power from renewables and support its integration into the energy system

Electrolysis Research and Demonstration

The potential of Hydrogen for the greening of industry has lead to fast capacity increase and cost reduction

Electrolysers, M€ FCH JU support

Electrolysis Research and Demonstration

The potential of Hydrogen for the greening of industry has lead to fast capacity increase and cost reduction

Electrolysers, M€ FCH JU support

Electrolysis Research and Demonstration

Support per country and type of beneficiary for electrolysis

Safeguarding Europe's leading position in Low Temp electrolysis

Vibrant community of OEMs and R&D institutions

PEM electrolysis: Number of publications, patents, etc. 2004 - 2017

https://fch.europa.eu/page/tools-innovation-monitoring-tim

EU 823, US 430, China 270, JPN 193, S. Korea 143

DE 224, FR 136, I 116, UK 111, DK 62

https://fch.europa.eu/page/tools-innovation-monitoring-tim

EU: 333, China: 277, USA: 155, Japan: 131, South Korea: 90

DE: 84, IT: 46, ES: 43, UK : 40, FR 28, DK :28, CZ : 19

European leadership in High Temp electrolysers

Highest capacities & innovative concepts

SOE electrolysis: Number of publications, patents, etc. 2004 - 2017

https://fch.europa.eu/page/tools-innovation-monitoring-tim

EU 508, China 255, US 246, JPN 121, S. Korea 74

DE 117, FR 103, DK 94, UK 79, I 69, E 40

Support to electrolysers beyond projects

Actions facilitating the market entry of electrolysers

Studies, e.g. Opportunities arising from the inclusion of H₂ in NECPs

Developing an EU wide Guarantees of Origin Scheme for Hydrogen

Harmonisation of electrolyser Testing Protocols

Method for Low Temperature Water Electrolysis

Solar to Hydrogen

Electrolysis

Concentrated solar demonstrated in the field

Redox and HyS cycles supported

100	
21:02	- TR 22103
2104	- TR 22105
2106	- TR 22507
2108	
2205	- TR 22203
2204	- TR 22205
2206	- TR 22207
2208	- TR 22300
2301	- TR 22302
2303	- TR 22304
2305	- TR 22306
2307	- TR 22308
2400	- TR 22401
2402	- TR 22403
2404	
2407	
2501	- TR 22502
2508	- TR 22504
2505	TR 22506
2507	- TR 22508
2602	TR 32605
2606	TR 22607
2608	-Taverage

PhotoElectroChemical devices: moving to practical sizes

High efficiencies at specimen scale; challenges at scaling up and "under sun" operation

Compact reformers

Green hydrogen from raw biogas

Efficient separation / purification of H₂

Preparing for Hythane, underground storage, H₂ as byproduct

Efficient Distribution of H₂

Liquid Organic carriers

Summary

Electrolysers: key enabler technology for Sectorial integration, Energy storage, Decarbonizing industry & the gas grid

Electrolysers: EU leadership but further work is required for cost reduction, improved efficiency, operation in specialised environments

Alternative routes for green H_2 production, H_2 storage and purification enjoying equivalent support

Green Hydrogen for sectoral integration expected to play a major role in the 2030 - 2050 Energy Strategy

Nikolaos Lymperopoulos

Project Officer Nikolaos.Lymperopoulos@fch.europa.eu

For further information

www.fch.europa.eu

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

