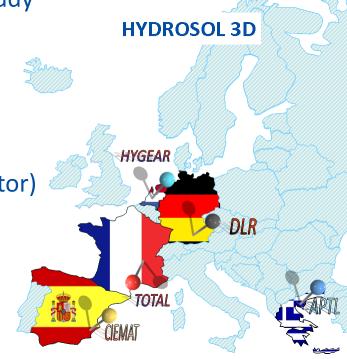
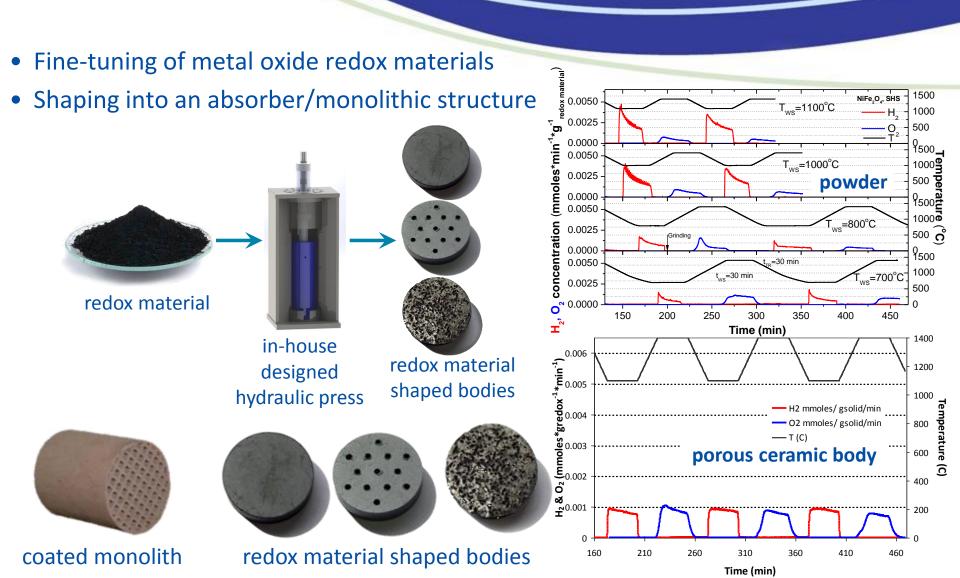
HYDROSOL-3D (FCH JU-2425224)

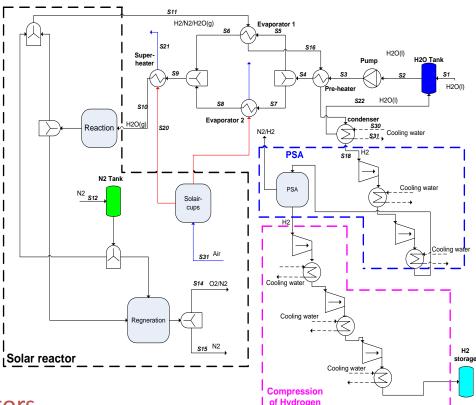
Souzana Lorentzou Aerosol & Particle Technology Laboratory/ CPERI / CERTH (Coordinator)


HYDROSOL 3D & Partnership description


HYDROSOL 3D

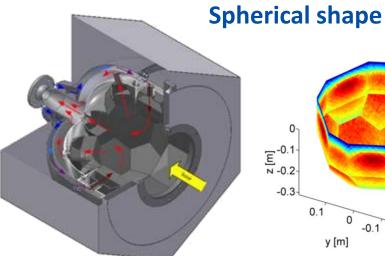
Scale Up of Thermochemical **HYDRO**gen Production in a **SOL**ar Monolithic Reactor: a **3**rd Generation **D**esign Study

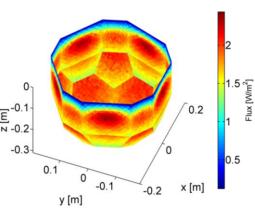
Duration: 01/01/10-31/12/12
Design of a 1MW Pilot Plant
FCH JU Budget: 1.73M€, EU Funding: 0.98M€


- Aerosol & Particle Technology Laboratory (Coordinator)
- DLR, Deutsches Zentrum für Luft und Raumfahrt
- CIEMAT, Centro de Investigaciones Energéticas, MedioAmbientales Y Tecnológicas
- TOTAL S.A.
- HYGEAR


- Steady state simulation of the process
- Exergy analysis

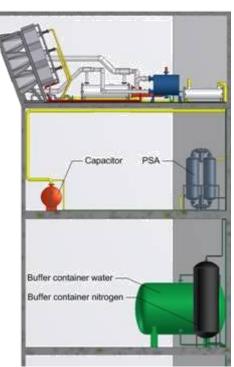
	Process unit	E _f [kW]	E _P [kW]	E _D [kW]	ε _k [%]	y _k [%]
	Solar reactor	896	283	613	31.59	60.51
	Pre-heater	3.26	1.26	2	38.65	0.19
	Evaporator 1	35.89	14.02	21.87	39.06	2.15
	Evaporator 2	41.03	20.59	20.44	50.18	2.01
	Super-heater	4.69	3.97	0.7	84.64	0.1x10 ⁻³
	PSA	16.05	3.84	12	23.92	1.18
	H ₂ compression	16.04	7.06	8.98	44.01	0.88
	Overall system	1013	334	679	32.95	


High exergy destruction ratio
 → Optimization of solar reactor & evaporators


• Design of secondary concentrator

• New Receiver/Reactor Design

Absorber Possible shapes	Max. Quality value [-]
Flat	0,26
Conical	0,72
Spherical	0,94

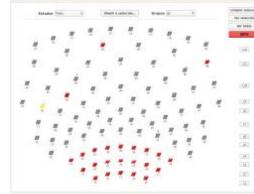


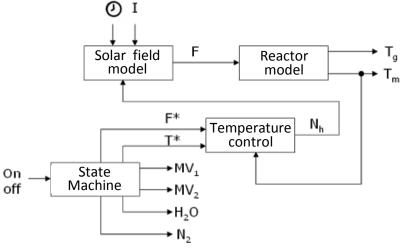
Integration of the HYDROSOL plant into a solar tower

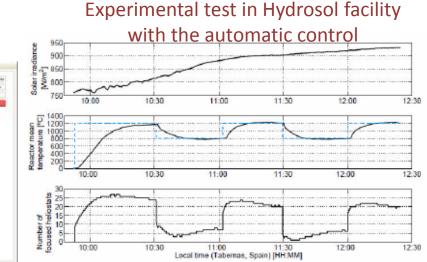
Reactor Chamber

Outlet level

Buffer level

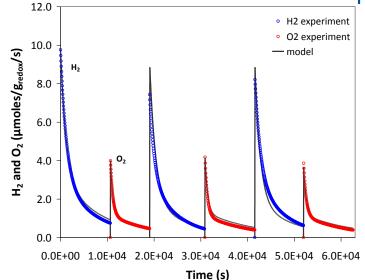

- Control concept based on HYDROSOL-II experience
- Development of a control/system program
- Steady state simulation of the process
- Pilot plant operation for validation of process strategies and optimization of critical process parameters

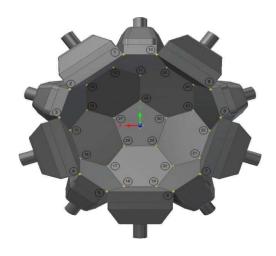



Supervisory control and data

acquisition interface

Heliostat field distribution




 Development, construction and operation of a lab-scale H₂ drying unit (PSA-based)

- Hand and a second and a second
 - Simulation of reactor performance

HYDROSOL-3D achievements Technical Accomplishments & Progress towards overall project and SoA

Anticipated advances (beyond the SoA) after the completion of the project include:

- Redox reactor with long-term cyclic operation stability (a total of over 70 cycles) under operation at high temperature solar irradiation (up to 1200°C)
- Ability to construct monolithic porous structures consisting entirely of the redox material
- Ability to construct a redox reactor with increased thermal uniformity
- A software tool for process engineering simulation at the MW scale
- Complete layouts of the whole plants and design of all specific components

Alignment to MAIP/AIP

AIP 2008 objective: Development of new reactor concepts with enhanced efficiency and scalability for future application

- Design of a new solar receiver/reactor for the production of H₂O via H₂O-splitting.
 Improved, more efficient, scaled up version (1 MW) of the established HYDROSOL reactor concept.
 - Optimized Hydrogen production
 - Enhanced transport, thermal and heat recovery properties

AIP 2008 objective: Simulation of the reactor-system

- The control procedure of the pilot plant was simulated. The operational ranges and the process parameters were optimized, while process strategies were validated through pilot plant operation
- Modeling/simulation of core components and of the process as a whole

Alignment to MAIP/AIP

AIP 2008 objective: Design and simulation of a scaled-up system for a demonstration in the MW range

- Design of an integrated solar system of 1 MW scale
- A new improved solar reactor
 - A reactor dedicated to solar thermochemical water splitting, customized to the solar tower plant design
 - Extensive modeling & simulation activities
 - A secondary concentrator for the reduction of radiation losses
 - A design that minimizes heat losses and enhances heat recovery

Comparison with the expected outcome AIP

Topic: SP1-JTI-FCH.2.3: Water decomposition with solar heat Sources (Call: 2008)							
AIP expected outcome	Project Objectives		Μ				
<i>Development of new high temperature reactors, component improvements</i>	Design of a reactor integrated with a solar tower		12				
Simulation of the	Simulation of the Pilot Plant		24				
components and systems	Simulation of core components and of the process as a whole		33				
Design study of a scaled up reactor	Design of 1 MW reactor for high-temperature H ₂ O-splitting, according to the following targets:	\checkmark	33				
	Integrated process concept	\checkmark	33				
	Automation and control concept	\checkmark	33				
	Techno-economic study to determine the feasibility of the scale up of the process to industrial application.		36				

Dissemination Activities

Within the 3 years of the project, the HYDROSOL consortium

- Has presented HYDROSOL-3D results so far in
 - 6 scientific journals
 - 12 Scientific conferences
 - 3 exhibitions & fairs
- Has supervised 4 Diploma thesis , 1 Master thesis
- Has supervised 1 PhD thesis

Technology Transfer / Collaborations

Technology transfer from the **HYDROSOL-3D** :

- Partners of the consortium have proceeded with the submission of the HYDROSOL-PLANT proposal which is the natural evolutionary step after HYDROSOL-3D, has received a high grade during the FCH-JU evaluation procedure and is in the pending list
- Partners of the consortium are participating in the **RESTRUCTURE** project which is based on the concept of honeycomb reactors for thermochemical processes
- National projects and regional collaborations have occurred

European Commission and FCH-JU for supporting our project

Thank you for your attention!

More Info at: http://www.hydrosol3d.org/ & http://www.hydrosol-project.org/