High energy density Mg-Based metal hydrides storage system EDEN (303472)

Luigi Crema Bruno Kessler Foundation http://www.h2eden.eu/

PROJECT OVERVIEW

- SP1-JTI-FCH.2011.2.4 Novel H2 storage materials for stationary and portable applications
- APPLICATION AREA SP1-JTI-FCH.2: HYDROGEN PRODUCTION & DISTRIBUTION
- From 2012-10-01 to 2016-01-31, ongoing project
- Total budget: EUR 2.653.574, EU FCH-JU contribution EUR 1.524.900
- EDEN aims at research, development and validation of a solid-state hydrogen storage technology for specific sector of stationary applications and at support of distributed grid level applications. The main objectives of this research project address the development of a new storage material with high hydrogen storage capacity, loaded into a specifically designed storage tank and able to be managed in real-time.
- Stage of implementation (95 % project duration passed)
- Project Consortium

High Energy Ball Milling

OVERALL TARGET

develop a *new storage material* with high hydrogen storage capacity, able to be managed in real-time for distributed level applications, included on a specifically designed storage tank and interlinked to an energy provision system able to match intermittent energy sources with local energy demand (buildings, small dwellings).

	Storage Properties	
	Unit	Value
Gravimetric Capacity	kgH ₂ /kg (%)	7.1
	kWh/kg	2.4
Volumetric Capacity	kgH ₂ /I	0.13
	kWh/l	4.4
Operating T	°C	320
Max Delivery pressure	bar	2
Min Charging Pressure	bar	3
Desorption rate*	gH ₂ /min	>1

TARGET 1. MATERIAL Best candidate: ED011

* For 1kg of material, at 320 °C and 1.2 bar (0.2 barG).

TARGET 2. STORAGE TANK

- Full innovative design (patent under application)
- Thermal management with rSOC
- Innovative design embedding HEAT PIPES, MATERIAL COMPACTION, VARIABLE DENSITY HEAT TRANSFER MEDIUM INSIDE
 TOTAL MATERIAL: 10 kg
 TEMPERATURE GRADIENT : ~ 1° C
 REACTION KINETICS A/D: > 3 g/min
 FUEL AVAILABILITY: 90%

TARGET 3. INTEGRATED SYSTEM

- Power input (Electrolyzer mode): 2,5 kW_{el}
- Power output (FC mode): 1,5 kW_{el}
- Delivery: 20NI/min H₂ (about 1mol)
- Hourly consumption $240 \text{ mol} (= 6000 \text{ g MgH}_2)$
- Tank prototype: effective Volume: 20 I => 720g H₂,
- About 8000 NI H₂, lasts for about 10h (full load)

Programme objective/target	Project objective/target	Project achievements to-date	Expected final achievement	
MAIP (Not applicable to solid state H2 storage system)				
AIP				
> 6% w Hydrogen storage capacity	> 6% w	7,1 % w	7,1 % w	
> 4% w Tank system storage capacity	4% w	5,9 % w (storage internal geometry) 1,3 % w (FULL TANK - weight optimization not addressed)	to be otimized	
Any FC Compatibility with FC systems	SOFC	rSOC	100% to be otimized	
< 500 €/kg Long term run cost of stored H2 – system level	300 €/kg	570 €/kg 4 year ÷ 1 year of system running	Set up a value chain for industrial production to reduce this cost	

FINAL TECHNOLOGY TARGETS

- Reliable system, 4000 working hrs / year
- Embedded design: everything in 3 m³ on the first prototype, target < 1 m³
- Efficient P2P system: target 40% overall efficiency
- The estimated price for EDEN material of 45 €/kg considering an industrial production for the catalyzed best candidate material -ED011

WHAT'S LEFT?

- BoP improvement (pressurization, water management)
- Pre-commercial development: standardization and modularity
- Demo project to arrive at a pre-commercial development of the technology (TRL 7 / 8)

RISKS AND MITIGATION

- Gravimetric density, 4%:
 - **RISK:** the overall tank can't reach 4%, but 1,3% gravimetric density
 - NATURE of RISK: oversizing of metallic structures for security reasons
 - MITIGATION: for stationary applications, this is not a relevant target, within certain limits of system weight
 - FUTURE PERSPECTIVE: Gravimetric optimization has yet to be performed. Density can be leveraged to +100%
- System integration and In-field testing:
 - **RISK:** planning for 6 months in-field testing will be reduced
 - NATURE of RISK: Missing components from suppliers, additional time to have a new desiccant system to complete the prototype
 - MITIGATION: Prolonged validation of components in-lab, agreements with local authority in Trentino to run demo activity after the project will be closed
 - FUTURE PERSPECTIVE: long term tests will be performed, partly within the EDEN project and partly immediately after

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

FCH JU projects on hydrogen storage

Joint Workshop

Santa Cruz, Tenerife (Spain) October 2nd, 2013

More than 60 participants TOPICS: MATERIALS, HYDROGEN TANK, SYSTEM INTEGRATION, CROSS CUTTING ISSUES A BOOKLET SUMMARIZING MAIN OUTCOMES WAS REALIZED

- **IPHE Workshop**: Hydrogen A competitive Energy Storage Medium for large scale integration of renewable electricity (25 09 2012, Seville SPAIN)
- Interactions with European-level projects
 - HYPER, SSH2S and BORE4STORE (including final event)
 - FET FLAGSHIP GRAPHENE, FP7 H2020
 - **COST ACTION**: Nanostructured materials for solid-state hydrogen storage

HORIZONTAL ACTIVITIES

- PhD education
 - Dr. Matteo Testi (FBK): modelling to design the solid state hydrogen tank, design of the integrated system, validation and tests
 - Mr. Hafeez Ullah (FBK): catalyst material and analysis
 - Mr. Pablo Acosta Mora (ULL): electrochemical characterization of SOFC units and physicochemical SOFC studies under the EDEN project.
- Project activities in safety, regulations, codes, standards
 - Validations in FBK following regulation Dlgs. TU 81/08, meeting with local authorities in Trento (PAT, APRIE), Involvement of the Barcelona Government, of the Energy Agency of Barcelona. Safety regulations for tests in Barcelona agreed with the Pompeers, following a Risk assessment analysis prepared by project partners.
- General public awareness
 - More than 10 national and international press releases on newspapers
 - 2 services on Italian National Television (RAI) and a report on TV DEDALO di ADA Channel - digital terrestrial channel
 - Press Release on BUILD UP, The European portal for energy efficiency
 - Final Dissemination Event open event

La casa pulita è a idrogeno e sta nascendo a Trento

EDEN Final Dissemination Event

DISSEMINATION ACTIVITIES

- Website and dissemination materials (leaflet, brochure, card)
- **1 workshop** *"FCH JU Joint Workshop on Hydrogen Storage"* organized
- 1 panel session "HYDROGEN STORAGE: a key element for Future Energy Systems" organized
- 8 CONFERENCES attended with presentation
- 11 SCIENTIFIC PUBLICATIONS
- 3 PATENTS under evaluation for application
- WHITE PAPER on panel session results

EXPLOITATION PLAN/EXPECTED IMPACT

EDEN: 1st POWER TO POWER SYSTEM integrating a hydrogen solid-state Mg-based storage solution and a rSOC with full thermal and fuel management

- MBN ED011 storage material at catalogue with a technical datasheet
- Realization of an industrial value chain for production the material, technology development
- Future plans: new DEMO project to move EDEN system from TRL5 to TRL7, in parallel to specific developments from partners to optimize components and design

EXPLOITATION PLAN/EXPECTED IMPACT

Acknowledgements & Contacts

EUROPEAN COMMISSION

The research leading to this results has received funding from the European Union's Seventh Framework Programme (FP7/2007-13) for the Fuel Cells and Hydrogen Joint Technology Initiative under Grant Agreement nr. 303472

Luigi Crema, Head of ARES

Ph: +39 (0)461 314922

Mob: +39 335 6104991

Mail: crema@fbk.eu

Web: www.fbk.eu

www.ares.fbk.eu

