



# **ELECTRA**

#### High temperature electrolyser with novel proton ceramic tubular modules of superior efficiency, robustness, and lifetime economy

Truls Norby University of Oslo

Project website: http://www.mn.uio.no/smn/english/research/projects/chemistry/electra/

Email Coordinator: truls.norby@kjemi.uio.no

Programme Review Days 2017 Brussels, 23-24 November

# **PROJECT OVERVIEW**



- Call year: 2013
- Call topic: SP1-JTI-FCH.2013.2.4: New generation of high temperature electrolyser
- Project dates: 2014-03-03 2017-06-02
- % stage of implementation 01/11/2017: 100%
- Total project budget: 3,788,980 €
- FCH JU max. contribution: 2,240,552 €
- Other financial contribution: 1,548,428 €
- **Partners:** UiO(NO), ITQ CSIC(ES), SINTEF(NO), MARION(FR), CoorsTek Membrane Sciences(NO), Abengoa Hidrogeno(ES), Carbon Recycling Int.(IS)

# **PROJECT SUMMARY**



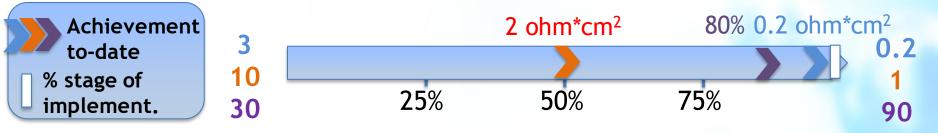
#### **ELECTRA Objectives:**

Develop and demonstrate scalable fabrication of tubular HTE cells with proton conducting electrolytes for a 1 kW multi-tube module.

Demonstrate proof-of-concept HT  $CO_2$  and steam co-electrolysis.

#### ELECTRA Global positioning vs int. SotA:

Produce directly dry pressurised H<sub>2</sub> more efficiently and safely than competing electrolyser technologies due to proton ceramic electrolyte and tubular geometry.


ELECTRA Application and market area:

Integration of HTE technology with geothermal and solar-thermal power.



### PROJECT PROGRESS/ACTIONS - Performance

Status at month 39 of a 39 month project (100% implementation) at 02/06/2017



|  | Aspect<br>addressed | Parameter<br>(KPI)                                       | Unit        | SoA<br>2017 | FCH JU Targets |      | Anthe Hillesta to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--|---------------------|----------------------------------------------------------|-------------|-------------|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |                     |                                                          |             |             | Call<br>topic  | 2017 | and the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|  | Performance         | Steam anode<br>ASR @ 700°C<br>and 4 bar H <sub>2</sub> O | ohm*c<br>m² | 0.2         | 0.2            | 0.2  | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|  |                     | Cell ASR<br>@700°C and 4<br>bar $H_2O$                   | ohm*c<br>m² | 1           | 1              | 1    | C) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|  |                     | Electrical<br>efficiency @<br>0.2 A/cm <sup>2</sup>      | %           | 80          | 90             | 90   | $\begin{array}{c} \blacksquare \\ \hline \blacksquare \\ \blacksquare \\$ |

## PROJECT PROGRESS/ACTIONS - Tubular module developments




Status at month 39 of a 39 month project (100% implementation) at 02/06/2017

| Achievement<br>to-date<br>% stage of<br>implement. | Gen2 OK but<br>Gen1<br>Concept           | low prod. rate, Gen 3 7<br>25% 50%                                                           |                                                                                                                                                                | Gen2 or 3<br>Constructed<br>and operated |  |
|----------------------------------------------------|------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| Aspect<br>addressed                                | Part aspect                              | Measure of<br>development                                                                    | Status                                                                                                                                                         |                                          |  |
| Tubular                                            | Tube<br>development<br>and<br>production | Gen1=Single tube<br>Gen2=Stacked single<br>segments<br>Gen3=Segmented-in-<br>series monolith | Gen1: Produced in large numbers.<br>Gen2: 2-segment stacks. Produced in<br>small numbers.<br>Gen3: 3 of 4 layers developed. No fu<br>complete tube production. |                                          |  |
| module<br>developments                             | 18-tube 1 kW<br>multitubular<br>module   | Design, construction,<br>commissioning,<br>functionality test.                               | All aspects completed.<br>Ready for operation.<br>Final electrolysis test not<br>completed due to delayed stacked                                              |                                          |  |
|                                                    |                                          |                                                                                              | tube production.                                                                                                                                               |                                          |  |



## PROJECT PROGRESS/ACTIONS - Process integration and techno-economics





# SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES



- Interactions with projects funded under EU programmes
  - EFFIPRO (FP7 ENERGY): Experience and know-how on proton ceramic cells, especially air/steam electrodes (UiO, ITQ CSIC).
  - PROTON (ERA-NET): Development of double perovskite air/steam electrodes.
- Interactions with national and international-level projects and initiatives
  - FOXCET (RCN): Fundamentals of space charge layers in solidstate electrolyte and electrode interfaces. Mechanical properties and degradation mechanisms of proton ceramic electrolytes.
  - METALLICA (RCN): Metal-supported proton ceramic electrolyser common efforts in solving electrolyte-related reproducibility issues.



Time and resources for development of Gen2 and Gen3 tubes under-allocated.

- Reallocation of resources between WPs within partners.
- Step down to lower Gen# for production for multitubular module

Timing, order, and use of resources not optimal for some interrelated design and modelling tasks

- Reorganisation of time table in WPs 4 and 5

Production capacity of tubes for multitubular module underallocated

- Reorganisation of responsibilities to free resources at critical partner
- Budget transfer between partners
- Project period extended 3 months

## EXPLOITATION PLAN/EXPECTED IMPACT



**Exploitation** 

ER1&2 Fabrication (CMS, SINTEF, UiO)

ER3&4 Interconnects (UiO, SINTEF, CSIC)

ER5 Powder fabrication (MARION)

ER6&7 Steam electrode fundamentals (UiO)

ER8 HP IT tubular PCEs (CSIC, SINTEF)

ER9&10 Integration with heat (CRI,AH)

ER11 Design of multitubular module (CSIC, UiO)

Impact (related to ERs)

Follow-up national project

Follow-up national and EU projects

Increased sales

Follow-up EU MERA-NET project

Follow-up EU FCH project ("GAMER")

Long term implementation in geothermal or solar-thermal plants

Patent application; new industry

# **DISSEMINATION ACTIVITIES**



# Public deliverables D6.1 Establishment of Innovation and Exploitation Board D6.2 Summer School organised D7.4 Final report & publ. summary Conferences/Workshops 2 organised by the project (Int. Summer School + IDHEA PCE) ≈12 in which the project has participated (but not organised) Social media Social media

#### Publications: 3

- "Ba<sub>0.5</sub>Gd<sub>0.8</sub>La<sub>0.7</sub>Co<sub>2</sub>O<sub>6-δ</sub> Infiltrated...", R. Strandbakke *et al.*, *J Electrochem Soc*, 164 (2017) F196.
- "Development of composite steam electrodes...", N. Bausa *et al.*, Solid State Ionics, 306 (2017) 62.

#### Patents: 0

(1 patent application under submission)

## Thank You!

Coordinator: truls.norby@kjemi.uio.no