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Example of joint theoretical, numerical, experimental studies to underpin the 

QRA in HyTunnel-CS project (www.hytunnel.net). Research structure applied:

Presentation outline 

Development and validation of CFD model accounting for all physical 

phenomena and reproducing experimental data on tank rupture in a fire.

CFD analysis of hazards: numerical experiments on different tanks rupture 

in tunnels with different length, cross-section area, aspect ratio, etc.

Theoretical similitude analysis of numerical experiments to build the 

universal correlation for blast wave decay after tank rupture in a tunnel fire.

Validation of the universal correlation for blast wave decay after tank 

rupture in a tunnel fire against experiments in real tunnel.

Use of the correlation for assessment of hazards (consequences) and 

QRA of incidents with hydrogen-powered vehicles in tunnels.

http://www.hytunnel.net/
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CFD model of tank rupture in a fire

Combustion contributes to the blast wave strength

Combustion increases blast wave 

pressure by more than 65% at 5 m!

3
Conclusion: tank rupture models without combustion cannot be used for hydrogen safety engineering. 

Japanese Test No.2 (open atmosphere)
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CFD model of tank rupture in a fire

Why combustion rate decreases after about 1 ms?

Hydrogen mass burnt during fast combustion: 

▪ 3% for storage tank with NWP=350 bar 

▪ 6% for tank with NWP=700 bar0 5 10 15 20 25 30 35 40 45 50
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Conclusion: hydrogen mass contributing to the blast wave strength depends on storage pressure. 
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CFD model of tank rupture in a fire

Why combustion rate decreases after about 1 ms?

Conclusion: reaction rate decrease with decrease of pressure at the contact surface.

Dynamics of H2, O2, H2O, temperature, reaction rate (H2O), and pressure in time.

0.5 ms 1 ms 3 ms 
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Numerical experiments with validated model 

Blast wave decay: atmosphere versus tunnel

▪ Diamonds – fast 3D decay in the open 

atmosphere for 171.5 L, 70 MPa 

(6.96 kg at 288 K) tank ruptured at 95 

MPa (390 K). Hazard distances:

- Serious injury: <18 m

- No-harm: >41 m

▪ Extremely slow decay of blast wave in 

a tunnel (quasi-1D) compared to the 

open atmosphere (3D).

Conclusion: tank rupture in a tunnel (confined space) must be excluded by all means. 

3D decay (by e-Laboratory 
of Hydrogen Safety)
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Numerical experiments with validated model 

Series of storage tanks rupturing in different tunnels

Conclusion: numerical tests with validated CFD model are efficient for consequences analysis.

Numerical experiments in tunnels of cross-section area 24-139 m2, aspect ratio width-

height 1.2-2.7, tunnel length 150-1500 m with tanks of volume 15-176 L, and pressure 35-

95 MPa (mass 0.6-6.9 kg).
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The correlation for blast decay in tunnel

Conclusion: use complementarities and 

synergies of theoretical and numerical

methods to develop tools for hydrogen 

safety engineering.

Rupture of tank of arbitrary volume and 
pressure in a tunnel of different cross-section 
area, aspect ratio and length.

Dimensionless distance: 𝐿𝑇 =
𝑃0𝐿𝐴

𝐸⋅𝐴𝑅0.5
𝑓𝐿

𝐷𝑇

Dimensionless pressure : 𝑃𝑇 =
Δ𝑃

𝑃0
⋅
1

𝐿𝑇

Conservative: 𝑃𝑇 = 0.87 ⋅ 𝐿𝑇
−1.35

Best fit: 𝑃𝑇 = 0.22 ⋅ 𝐿𝑇
−1.35

Similitude analysis of numerical experiments



9

The correlation for blast decay in tunnel

Validation of the correlation against real tunnel tests

𝐿𝑇 =
𝑃0𝐿𝐴

𝐸 ⋅ 𝐴𝑅0.5
𝑓𝐿

𝐷𝑇

𝑃𝑇 =
Δ𝑃

𝑃0
⋅
1

𝐿𝑇

𝑃𝑇 = 0.87 ⋅ 𝐿𝑇
−1.35

(conservative)

Correlation by Ulster

𝑃𝑇 = 0.22 ⋅ 𝐿𝑇
−1.35

(best fit)

Validation by CEA

Conclusion: joint theoretical-numerical-experimental study generated a new tool for QRA. 

Best fit correlation is demonstrated
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Assessment of consequences for QRA

Scenario: hydrogen vehicle incident in Dublin tunnel

Conclusion: QRA is preferable to “coloured” risk but requires validated tools as in this study.

▪ Risk = (Probability of an event) X (Consequences)

▪ The developed correlation for blast wave decay is applied to assess consequences of 

incident with hydrogen vehicle in Dublin tunnel fire as a part of QRA methodology.

Risk is acceptable if FRR of tank-TPRD system is 

more than 84 min or explosion free in a fire self-

venting (TPRD-less) tanks are used. 
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Thank you

For further information
v.molkov@ulster.ac.uk

Vladimir MOLKOV
European Hydrogen Safety Panel
EHSP@clean-hydrogen.europa.eu
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mailto:EHSP@clean-hydrogen.europa.eu
https://twitter.com/CleanHydrogenEU
https://www.linkedin.com/company/clean-hydrogen-partnership
https://www.youtube.com/FCHJU

