

SOL2HY2 Solar To Hydrogen Hybrid Cycles

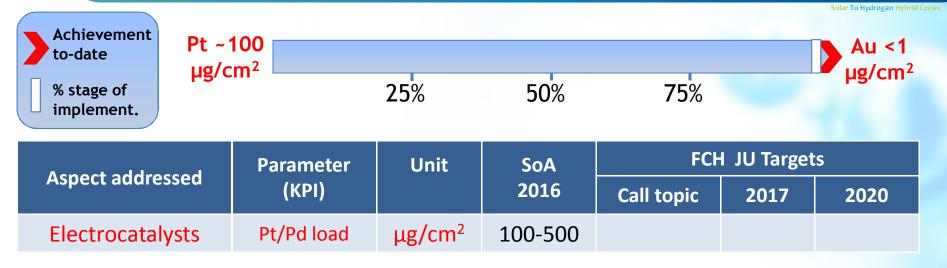
Michael Gasik Aalto University Foundation

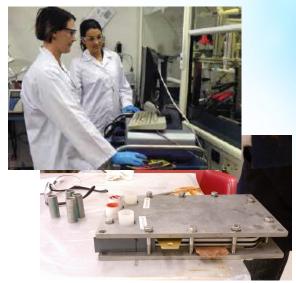
sol2hy2.eucoord.com

Coordinator email: s.odorizzi@enginsoft.com

Programme Review Days 2016 Brussels, 21-22 November

PROJECT OVERVIEW


Project Information	
Call topic	SP1-JTI-FCH.2012.2.5 - Thermo-electrical- chemical processes with solar heat sources
Grant agreement number	325320
Application area (FP7)	Hydrogen Production
Start date	01/06/2013
End date	30/11/2016
Total budget (€)	3,701,300
FCH JU contribution (€)	1,991,115
Other contribution (€, source)	214,000 (Tekes, FI)
Stage of implementation	99 % project months elapsed vs total project duration, at date of November 1, 2016
Partners	Enginsoft (IT), Aalto (FI), ENEA (IT), DLR (DE), Outotec (FI), Erbicol (CH), Woikoski (FI)


- The project focuses on applied R&D and demo of the relevant-scale key components of the solar-powered, CO₂-free hybrid water splitting cycles, complemented by their advanced modeling and process simulation and site-specific optimization
- Solar-powered thermo-chemical cycles are capable to directly transfer concentrated sunlight into chemical energy. Of these, hybrid-sulfur (HyS) cycle was identified as the most promising, but its challenges remain in materials and the whole flowsheet optimization, tailored to specific solar input and plant site location.
- In the project, consortium developed solutions for the SO₂-depolarized electrolyser, sulfuric acid handling and for the BoP.
- The on-Sun demo has proven the said concepts and a new software tool were created, allowing the tailoring of such flexible plant at any worldwide location, leading to H_2 plants and technology "green concepts" commercialization.

PROJECT PROGRESS/ACTIONS - Aspect 1

Target achieved:

- *Pt/Pd catalysts are substituted to gold nanoparticles and the load is decreased even by 100-500 times*
- The activity of the catalyst towards SO₂ oxidation was respectively increased note the values cannot be compared with water electrolysis due to different chemistry involved
- At the same time, parasitic reaction (sulfur formation at cathode due to carry-over) was analyzed and its suppression methods developed and tested

PROJECT PROGRESS/ACTIONS - Aspect 2 Achievement 8-9 to-date 16 €/kg €/kg % stage of 25% 50% 75% implement. **FCH JU Targets** Parameter Unit SoA Aspect addressed (KPI) 2016 Call topic 2020 2017 Excpected H₂ costs €/kg 10-16 <5 Cost

Details:

• For Almeria plant with 50MW on mirrors, cost of hydrogen was analyzed vs. cycle opening, demand and power options:


- Cycle opening by 30% drops H₂ costs twice (all scenarios)
- Off-grid option with power block drops costs by ~30%
- Full 100% RES use is possible even for fully open cycle
- New options with combination of PV and sulfur burning allow optimal solution vs. demand, %RES and plant location constrains
- A special optimization software tool produced

PROJECT PROGRESS/ACTIONS - Aspect 3 Achievement **Activity** Not to-date needed % stage of 25% 50% 75% implement. FCH JU Targets Parameter Unit SoA Aspect addressed (KPI) 2016 **Call topic** 2017 2020 **Redox** materials +50% efficiency Activity

Target achieved:

- Redox materials are not used in the SOL2HY2 cycle
- Sulfuric acid cracking only utilize simple Fe_2O_3 catalysts, but the conversion rate depend more on cracker parameters and dynamics than catalysts presence
- Introduction of the flexible opening of the HyS cycle allows balancing between hydrogen and acid demand and the RES energy availability, which is impossible in traditional HyS cycle flowsheet

Interactions with projects funded under EU programmes	
HYDROSOL-PLANT	DLR as project partner develops a demo plant in Almeria, Spain for H_2 production via metal oxide thermochemical cycle. There is an intensive exchange with SOL2HY2.
HYTHEC (2004-2007)	Development of single-chamber solar reactor for sulphuric acid cracking in DLR's solar furnace
HycycleS (2008-2011)	Development of two-chamber solar reactor for sulphuric acid cracking in DLR's solar furnace. Catalyst development and characterization. Materials long-term corrosion testing.
Interactions with national and international-level projects and initiatives	
US DOE SunShot (2010-2013)	DLR acted as a subcontractor in this project. A joint workshop with SOL2HY2 consortium and Savanna River National Laboratory (SNRL), USA, was organized at DLR in December 2015.

DISSEMINATION ACTIVITIES

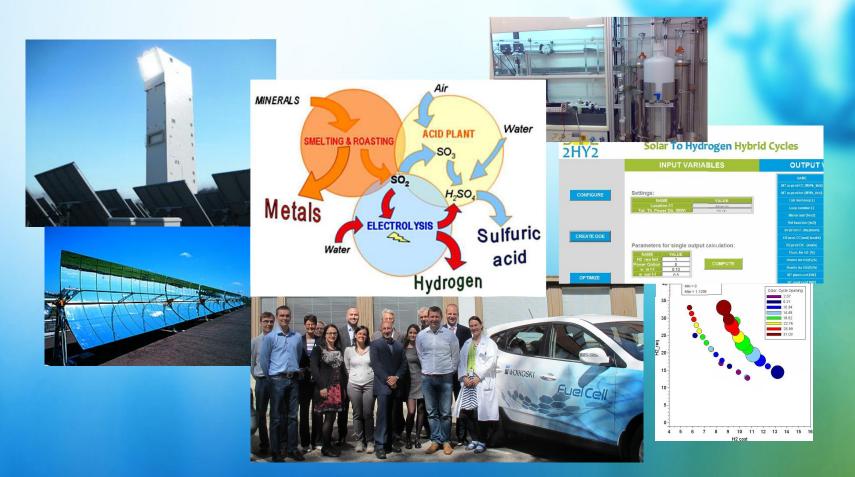
Public deliverables

- D2.4 Results of testing of advanced SDE coatings and their selection
- D3.6 Stability of catalysts for SAC
- D4.8 Selected STH/STE concept
- D5.10 Selection of BOP components and interfaces for plant integration
- D7.12 Results of the demonstration of the components and plant concepts

Conferences/Workshops

- 5 organised by the project
- 51 in which the project has participated (but not organised)

Social media


Publications: 21

- Performance of electrocatalytic gold coating on bipolar plates for SO2 depolarized electrolyser AALTOA Santasalo-Aarnio 1, A. Lokkiluoto, J. Virtanen1, M.M. Gasik Journal of Power Sources, Vol. 306, Elsevier
- Process modelling and heat management of the solar hybrid sulfur cycle DLR A. Guerra Niehoff, N. Bayer Botero, A. Acharya, D. Thomey, M. Roeb, C. Sattler, R. Pitz-Paal International Journal of Hydrogen Energy, Vol. 40 Issue 13, Elsevier

Patents:

Thank You!

Coordinator: <u>s.odorizzi@enginsoft.it</u> Speaker: michael.gasik@aalto.fi