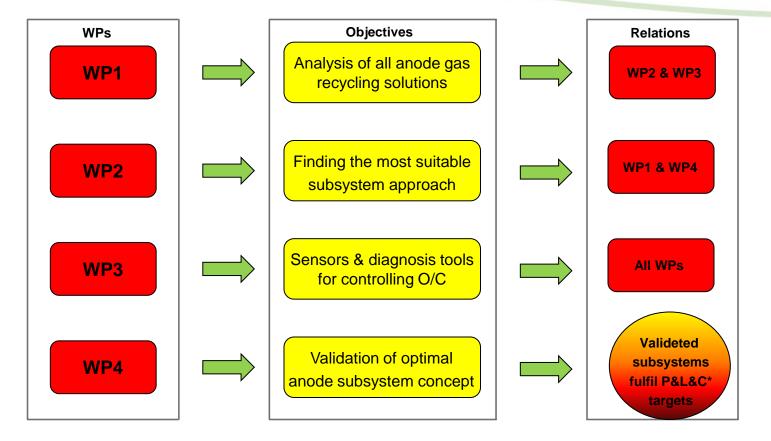
ASSENT (Contract number 244821)

Jari Kiviaho VTT/Chief Research Scientist

ASSENT Partnership & Budget


3 years project: 01-01-2010 to 31-12-2012
Total budget: 4 855 k€
Total funding: 1 955 k€

Participant	Country	Туре			
VTT	Finland	R&D			
FZJ	Germany	R&D			
HTc	Switzerland	SME			
Hexis	Switzerland	SME			
EBZ	Germany	SME			
Wärtsilä	Finland	Industry			

- The overall goal is to find optimal anode subsystem concepts that are validated for small-scale and large-scale SOFC system.
- Subsystem should fulfil performance, lifetime and cost targets for stationary applications:
 - ✓ 45 60% electrical efficiency
 - ✓ 40 000/60 000 hours (S/L)
 - ✓ Cost 3500/1750 €/kW_e (S/L)

ASSENT Approach

* = preformance, life-time and cost target

• Analysis of all possible anode gas recycling solutions have been made

Lay-out	Rec. cooled by	NG	BG	Power kW AC_net	Cell type	Rec. ratio	u_F stack	Pre- ref.	Water cond.	variants	Calc. by
Type 0.1 (Ref.): Water condens., no recycling	-	2 x	-	250 3	ASC ESC	0	80%	heated	Yes	4	Jülich
Type 1.1: Blower (hot)	anode off-gas	2 x	2 x	250 3	ASC ESC	50/60/ 70	60/70/ 80%	not heated	No	72	VTT
Type 1.2: Blower (< 200°C))	air	2 x	2x	250 3	ASC ESC	50/60/ 70%	60/70/ 80%	heated	No	72	Jülich
Type 1.3: Blower (< 100°C)	air+ water	2 x	-	3	ESC	50/60/ 70%	60/70/ 80%	heated	Yes	18	Jülich
Type 2.1: Ejector steam driven	-	_	2x	250	ASC	50/60/ 70%	60/70/ 80%	not heated	Yes	18	VTT
Type 2.2: Ejector Fuel driven	-	2 x	-	250 3	ASC ESC	50/60/ 70%	60/70/ 80%	not heated	No	36	Jülich

ASSENT Activities & Results (WP2)

Chosen large-scale prototypes:

- ✓ System based on a hot temperature blower
 - More mature and not high risk solution

✓ System based on a steam driven ejector

• More potential and high risk solution

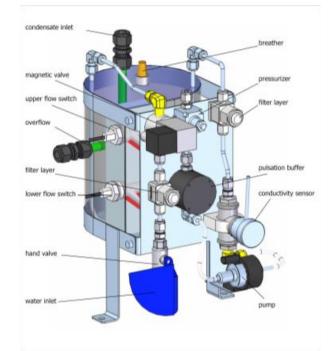
Chosen small-scale protypes:

- \checkmark System based on recycled liquid water in Hexis
 - Suitable for current stack design
- ✓ System based on a medium temperature blower in HTc
 - Suitable for current stack design

ASSENT Activities & Results (WP3)

- Evaluation of different sensors and diagnostics techniques that can be use in controlling anode recirculation subsystem have been made
 - ✓ Controlling O/C ratio
 - Gas analysis, Flow and Temperature measurement
 - ✓ Valuable information about sensor and diagnostic options
 - ✓ First systematic approach
 - ✓ Availability, cost, accuracy and durability of sensors/techniques were evaluated → Three deliverables
 - Gas analysis by cheap methods Difficult
 - Flow measurement by cheap methods Possible
 - Temperature by cheap methods Possible

ASSENT Activities & Results (WP4)


Large-scale:

- AGB based approach currently being validated in 50 kW_e power class, feasible solution with little unknowns
 → potential near term solution for products
- Steam ejector based approach, apparently highly feasible solution with quite many question marks → potential solution for future longer-term development products
- Design and manufacture of AGB module prototype done, validation tests just begun
- Preparation of steam ejector subsystem test bench going-on, components under design/sourcing

ASSENT Activities & Results (WP4)

Small-scale:

- EBZ has designed, manufactured and tested a water storage and supply unit for chosen concept of Hexis
- EBZ in co-operation with HTCeramix has designed an anode gas cooler and a steam reformer for chosen concept
- HTCeramix has developed an own hot gas blower design.
- HTCeramix and EBZ have together selected medium temp membrane pumps for component testing by VTT and sub-system testing at HTCeramix

ASSENT Accomplishment

- All Milestones have been reached so far
- All deriverables were delivered within the schedule
- Progress are pretty much towards overall project plan
- Improvement coming from the project to the following topics:
 - ✓ Performance (45-60% electrical efficiency)
 - ✓ Lifetime (40 000/60 000 hours)
 - ✓ Cost (3500/1750 €/kW_e)
 - ✓ Component viable for massproduction
 - ✓ Availability of suitable sensor and diagnostic methods

ASSENT Alignment to MAIP/AIP

The project is contributing to the objectives of Call FCH-JU-2008-1, Area SP1-JTI-FCH.3: Stationary Power generation & CHP, Topic SP1-JTI-FCH.3.2:

Component and system improvement for stationary applications by following fuel cell functions and the corresponding components:

- Reforming and fuel processing
- Thermal management
- Humidification
- Fluid supply and management including pumps, valves and flow meters
- Gaps or bottlenecks were not identified so far

- No special training and education activities arranged by the project but internal workshops and technical meeting were held
- No special contributes to develop regulations, codes and stadards but safety in developing subsystems is highly appreciated
- No dissemination activities during the first reporting periods but project will be actively involved such activities in last reporting period.

ASSENT Collaboration & Future Perspective

- Project used to has strong interlinkages with already terminated European Projects such as Large-SOFC and Real-SOFC projects
- Interaction with current FCH JU project like Cation, Genius and DeSign is strong.
- International working groups as IEA Annex 24 and with national projects as SofcPower 2007-2011 (Finland) and SOF-CH (Switzerland) are also linked.
- Great progress will be made in this project but world is not coming ready → System development including individual BOP component and whole sub-systems dvelopment must have important role also in future FCH JU programmes.

Thank you for your time !