

SSH2S (256653) Fuel Cell Coupled Solid State Hydrogen Storage Tank

Marcello Baricco Università di Torino <u>marcello.baricco@unito.it</u> www.ssh2s.eu

SSH2S in figure

Beginning: Feb. 1st, <mark>2011</mark>

H₂

End: Sept. 30th, <mark>2014</mark>

Duration: <mark>42</mark> months

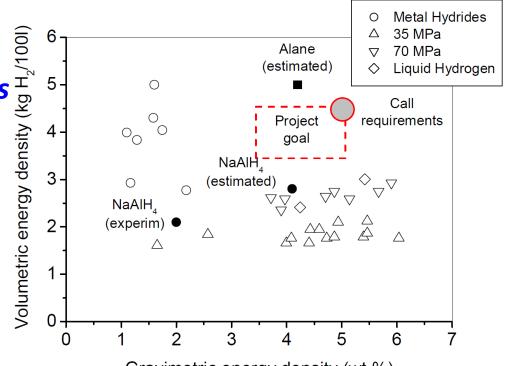
Budget: 3.5 M€ Total 1.6 M€ JU contribution

Partners: 4 research + JRC 3 industries

Beneficiary Number *	Beneficiary name	Beneficiary short name	Country	
1.	Università di Torino	UNITO	Italy	;
(Coordinator)				_
2. IF2	Institute for Energy Technology	IFE	Norway	1
3. SKIT	Karlsruhe Institute of Technology	KIT	Germany	:
4. DLR	Deutsches Zentrum für Luft- und Raumfahrt e.V.	DLR	Germany	:
5.	Tecnodelta s.r.l.	TD	Italy	1
6. Ser;energy'	Serenergy A/S	SER	Denmark	1
7.	Centro Ricerche Fiat	CRF	Italy	:
8. JRC	Joint Research Centre of European Commission	JRC	Belgium	:

SSH2S in picture

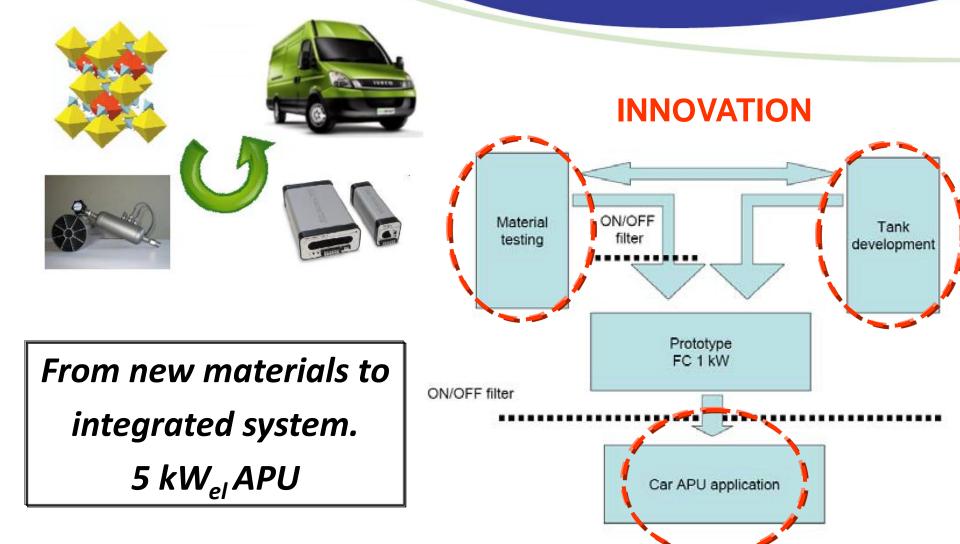
SSH2S goals



•Integration between hydrogen storage system and HT-PEM fuel cell

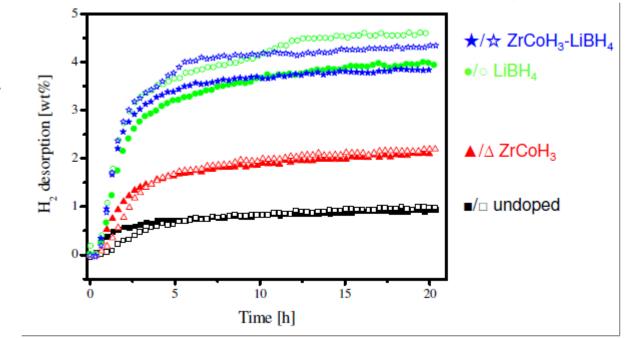
Development of new materials with high gravimetric and volumetric energy density
Technically relevant loading temperature and pressure
Loading time and stability of performances after several cycles

•New tank for supply of hydrogen flow.


•Low cost

Gravimetric energy density (wt %)

Volumetric and gravimetric energy density of hydrogen storage systems



H₂

solid symbols: as-milled open symbols: after heating at 150 ℃ and 110 bar H₂

Desorption isotherms at 150 $^\circ\,$ C

Material for prototype tank selected
200 g LiNH₂-MgH₂ plus additives will be produced
Basic characterization performed
Up to 10 cycles

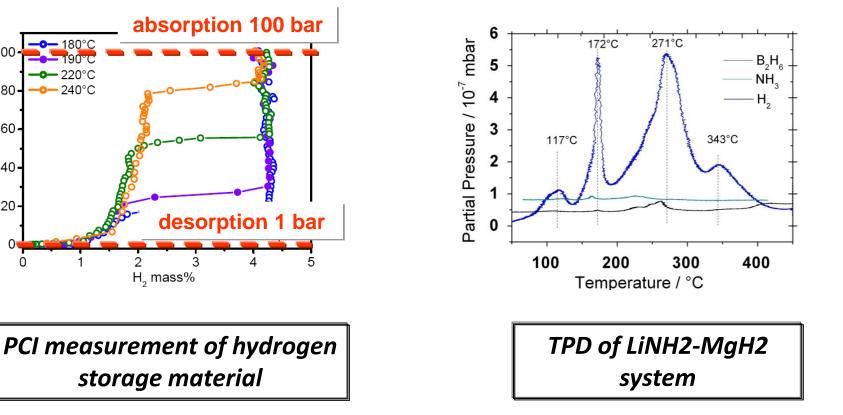
stability

H2

SSH2S results: material selection

100

80-

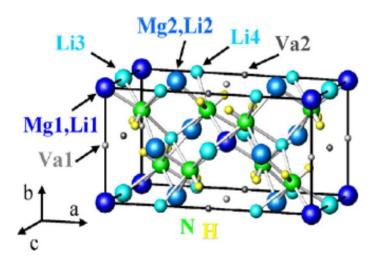

60-

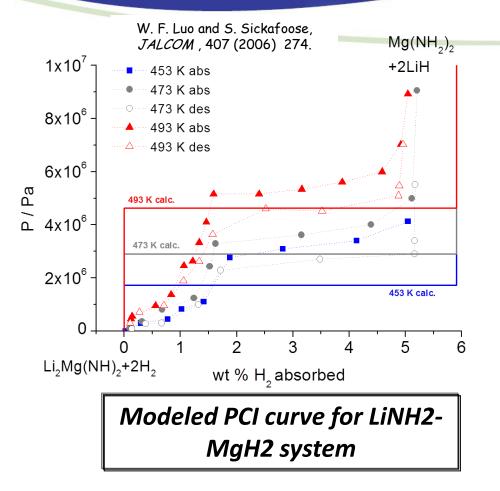
40

20

0

P (bar)


 •4.5 H2 wt% gravimetric density at 180 °C

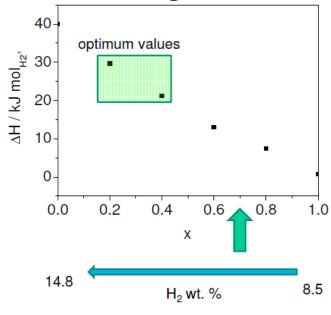

No pollution observed

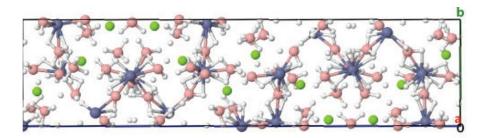
SSH2S results: material modelling

PCI curves modeled by combination of ab-initio and Calphad methods
Evidence of solid solution for low absorption

 H_2

T. Noritake, M. Aoki, M. Matsumoto, K. Miwa, S. Towata, H.-W. Li and S. Orimo, JALCOM 509 (2011) 7553.

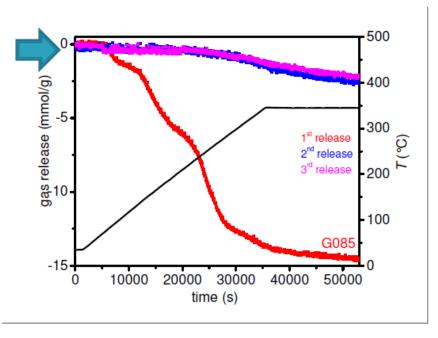

SSH2S results: new material development

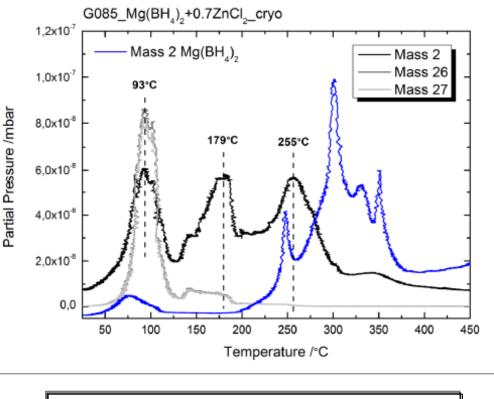

•Ab-initio modeling of new materials

•Mg-0.7Zn mixed borohydride selected

•Na-TMF₃ (TM = Ti, Mn, Fe)

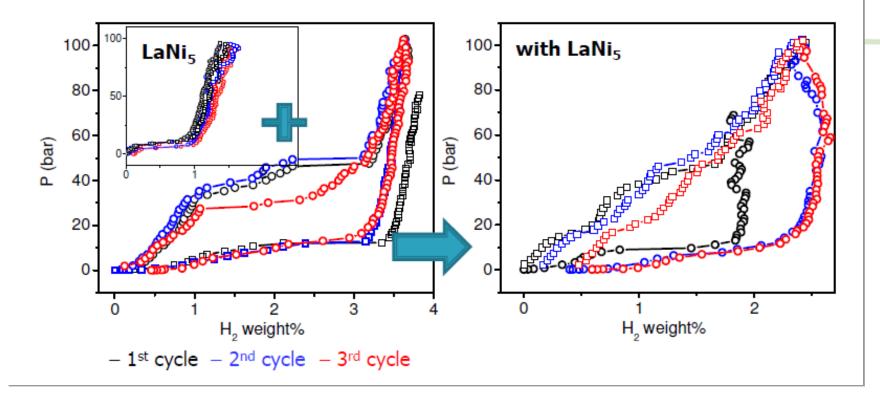
systems investigated


Ab-initio modeled structure of mixed borohydride


Effect of molar fractions of zinc (x) on decomposition enthalpy

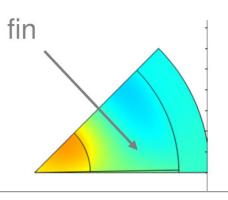
Basic characterization
B2H6 release observed
No reversibility observed
ON/OFF decision: stop activites

 H_2

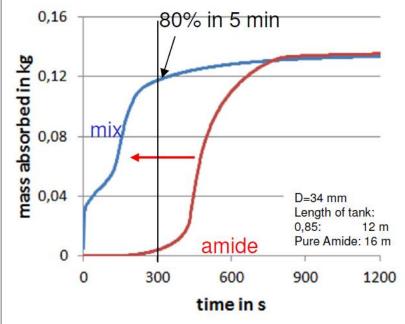


Gas release from mixed borohydride

SSH2S results: new concept

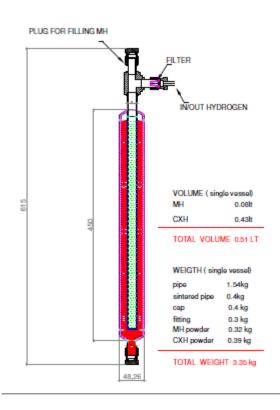

•Double materials used in the tank •Activation of complex hydride with intermetallic hydride

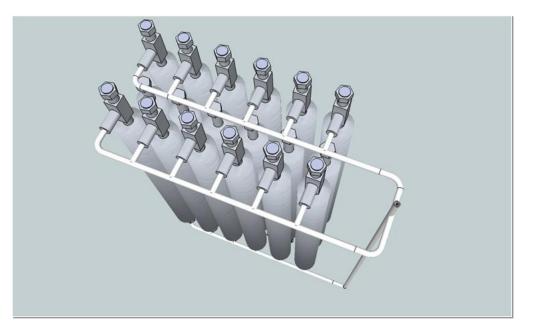
PCI of single and double materials



SSH2S results: tank development

Simulation of laboratory scale tank
Validation by experiments with a lab-scale tank




Effect of double material on tank loading

SSH2S results: tank development

•Preliminary design of prototype tank

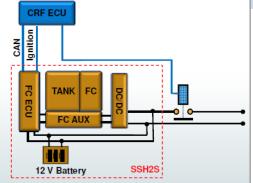
Scheme of prototype tank

SSH2S results: system integration

Preliminary layout of integrated system (1 kW) Architecture for APU (5 kW)

Selected Full Electric Vehicle for APU

90 Cell fuel cell stack 4-5kW peak power

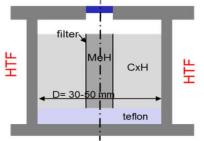


SSH2S vs MAIP/AIP

AA 2: Hydrogen Production, Storage & Distribution

Long-term and break-through oriented research on improved solid state hydrogen storage options for increased efficiency and storage capability, i.e. 2nd generation hydrogen storage technology.Integrated system to be demonstrated in a prototype system (1 kW) and in APU (5 kW)Preliminary architecture under development. propertiesIntrinsic properties of waterials not yet optimized	MAIP/AIP targets	Project goal	Project status	Gaps bottlenecks in RTD
CRF ECU	oriented research on improved solid state hydrogen storage options for increased efficiency and storage capability, i.e. 2nd generation hydrogen storage	system to be demonstrated in a prototype system (1 kW) and in APU (5	architecture under development. Good material properties	properties of materials not

Architecture for Daily Electric



SSH2S vs MAIP/AIP

AA 2: Hydrogen Production, Storage & Distribution

MAIP/AIP targets	Project goal	Project status	Gaps bottlenecks in RTD
Storage materials with capacities ≥ 6 wt.%, ≥ 60 kg H2/m3 reversibly releasing hydrogen at operating temperatures compatible e.g. with PEM FC, HT PEM FC or SOFC / MCFC	Approx. 5 wt% H2 (amides) 7-11 wt% wt% H2 (mixed borohydrides) Double materials concept	Storage materials with capacities up to 4.5 wt% H2 Reversibility at 180 ° C Single reaction step Stability on cycling Stop for mixed	Lack of reversibility in new developed materials
		borohydrides	lfilter

Double Materials concept

SSH2S vs MAIP/AIP

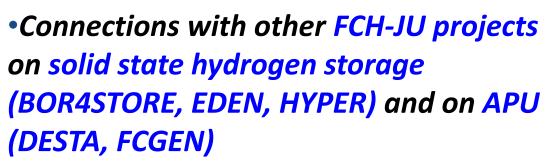
AA 2: Hydrogen Production, Storage & Distribution

MAIP/AIP targets	Project goal	Project status	Gaps bottlenecks in RTD
Improved system density for H2 storage (2015: 9 %wt of H2)	4 wt% of H2 4 kg H2/100 L Close to room temperature and pressure	Not yet available Gravimetric density likely lower than goal Volumetric density likely OK	High gravimetric density material with suitable properties not yet available
Cost effective production routes of the materials	< 1250 €/kg H2	Not yet available, but higher than goal	Low production for limited market

HT-PEM for integrated system

SSH2S cross cutting issues

 Training: 3 PhD student and **4 PostDocs** involved in the projec •Safety assessment for the integrated system Dissemination & public awareness planned: papers, conferences, workshops •Website www.ssh2s.eu Hydrogen technologies application to common life



SSH2S cooperations

 H_2

Connections with Working Group "Solid State Hydrogen Storage" inside N.ERGHY
Connections with NEW-IG
Connections with IEA-HIA Task 22
Connections with national and international hydrogen organisations
Technological transfer to SME

SSH2S acknowledgments

Thank you for your attention

