

Hybrid Membrane - Pressure Swing Adsorption (PSA) Hydrogen Purification Systems (Contract No 278538)

Theophilos Ioannides FORTH/ICE-HT

General Overview

Project full title: Hybrid Membrane - Pressure Swing Adsorption (PSA) Hydrogen Purification Systems Duration: 01/11/2011 – 31/10/2013 Total Budget: 1,606,279.00 € FCH contribution: 825,321.00 €

Partnership

FORTH (GR): Study of membrane materials
UPORTO (PT): Study of sorbents and PSA separation systems
PSE (UK)) Design and optimization of membrane separation systems
HYGEAR (NL): Construction and testing of hybrid separation system
CTI (FR): Design and manufacturing of ceramic supports and membranes

HY2SEPS-2 Summary

Main project goal

Design and testing of hybrid separation schemes that combine membrane and Pressure Swing Adsorption (PSA) technology for the purification of H_2 from a reformate stream that also contains CO₂, CO, CH₄, and N₂

Focus

Small systems operating at pressures < 10 atm

Approach

Membrane & adsorbent development, Process modeling & optimization, Pilot unit testing.

Expected Outcome

Hybrid process with lower operating cost and enhanced H_2 recovery compared to present situation.

HY2SEPS-2: Membranes (1/2)

Carbon membrane development on ceramic supports

 $H_2/CH_4 \& H_2/N_2$ selectivity obtained through molecular sieving Surface diffusion of CO_2 lowers H_2/CO_2 selectivity

Focus: reduce the number of preparation steps, tune CO₂ behavior

Deliverables

Results on carbon membranes synthesis - characterization and testing (M12)

HY2SEPS-2: Membranes (1/2)

H₂/CO₂ selectivity

60

Carbon membrane development on ceramic supports

blank support $H_2/CH_4 \& H_2/N_2$ selectivity obtained 10⁻⁶ Membrane #2 through molecular sieving (Permeability ~ 10,000 Barrer) P, mol m⁻²s⁻¹Pa⁻¹ Surface diffusion of CO_2 lowers H_2/CO_2 10⁻⁷ selectivity 10⁻⁸ Focus: reduce the number of Membrane #1 preparation steps, tune CO₂ behavior 10⁻⁹ 10 20 30 50 40

10⁻⁵

Deliverables

Results on carbon membranes synthesis - characterization and testing (M12)

HY2SEPS-2: Membranes (2/2)

Scale-up of carbon membrane synthesis and design of membrane module (M18)

Initial development is carried out on single porous ceramic tubes with a characteristic porous layer ranging from 15 kD to 0.8 μ m.

Next step: scaling-up to multi-channel tubes to improve surface/volume ratio.

Delivery date: end April 2013.

HY2SEPS-2: PSA adsorbents (1/2)

- Milestone 3: Screening of new adsorbents
 - MOF(1)
 - MOF(2)
 - MOF(3)
 - Activated carbon monolith (ACM)

HY2SEPS-2: PSA adsorbents (2/2)

- Milestone 3: Screening of new adsorbents
 - Selected material: MOF(1)

MOF(1) has a higher CO_2 working capacity and a higher CO_2/H_2 selectivity than currently employed adsorbents (activated carbon)

Model-based design of hybrid PSA-membrane separation systems

HY2SEPS-2: Modeling

HY2SEPS-2: Outcome

Expected output AIP Topic: SP1-JTI-FCH.2010.2.3 Call: FCH-JU-2010-1		Objectives Project	Status at 50% of the project	Expected revised objectives
Hydrogen recovery improvement		10%	N/A	10%
Product gas quality		99.999 % H ₂ & 75 % CO ₂	N/A	99.999 % H ₂ & 75 % CO ₂
Energy consumption of H ₂ cleanup (kWh/Nm ³ H ₂)	<0.004	<0.004	N/A	<0.004

H – Hydrogen Production & Purification

H03 – Gas purification technologies: *Research and development on gas purification technologies for hydrogen production and quality monitoring in order to address short-term fuelling requirements based on conventional and alternative fuels like bio-fuels. Coordination with H02 is required.*

Several processes and feedstocks will be used to produce hydrogen either in centralised (large scale) plants providing economies of scale or **distributed (small scale)** plants taking advantage of locally available primary energy sources and feedstocks with the benefit of generally improved sustainability and lower distribution infrastructure costs.

Identify and comment on gaps/bottlenecks in RTD&D proposed by MAIP/AIP documents

No gaps or bottlenecks detected related to hybrid PSA

Training and Education

Foundation for Research & Technology-Hellas, University of Porto, PSE

Dissemination & public awareness

PSE Advanced Process Modeling Forum (16-18 April 2013). Audience: Senior engineers from process industry.

Euromembrane 2012, 23-27 September, London

Website: hy2seps2.iceht.forth.gr

Enhancing cooperation and future perspectives

• Technology Transfer / Collaborations

Collaboration with adsorbent producers at research or development scale

- Project Future Perspectives
 - Proposed future research approach and relevance
 - A successful outcome can be readily exploited by participating SMEs
 - Collaboration for adaptation of technology to specific hydrogen production units

Relevance to other projects

CoMetHy: Compact Multifuel-Energy to Hydrogen converter

Steam reforming in a membrane reactor for combined productionseparation

NEMESIS2+: New Method for Superior Integrated Hydrogen Generation System 2+

Hydrogen production from diesel/biodiesel. Use of a PSA unit for hydrogen purification.

HyTIME: Low temperature hydrogen production from 2nd generation biomass

ReforCELL: Advanced multi-fuel Reformer for CHP-fuel CELL systems (membrane reformer)