

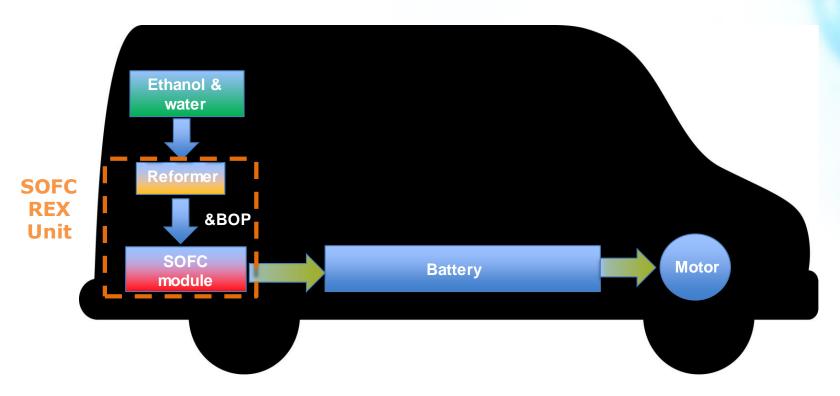
COMPASS

Competitive Auxiliary Power Units for vehicles based on metal supported stack technology

Richard Schauperl AVL List GmbH

www.h2020-compass.eu
Email Coordinator: Vincent.Lawlor@avl.com

Programme Review Days 2017 Brussels, 23-24 November


PROJECT OVERVIEW

- Call year: 2015
- Call topic: FCH-01.5-2015
- Project dates: Oct.2016 Sept. 2019
- % stage of implementation 01/11/2017: [33 %]
- Total project budget: 3.920.302,50 €
- FCH JU max. contribution: 3.920.302,50 €
- Other financial contribution: -
- Partners: AVL List GmbH, Nissan Motors UK,
 Plansee SE, Forschungszentrum Jülich

Project Summary

- BEV range extender based on SOFC technology
- Novel & competitive solution for EV battery REX
- Light BEV van with up scaling potential

- 55 % fuel to battery efficiency target
- Stacks, Balance of Plant & system Operation developed
- Demonstrated in a vehicle

Background & Targets

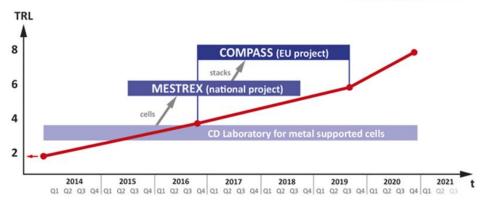
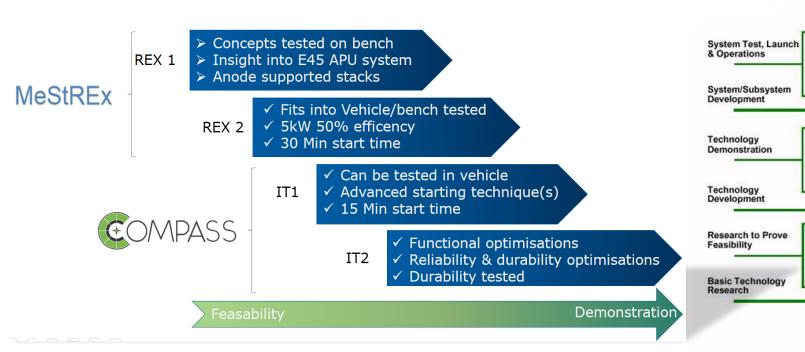



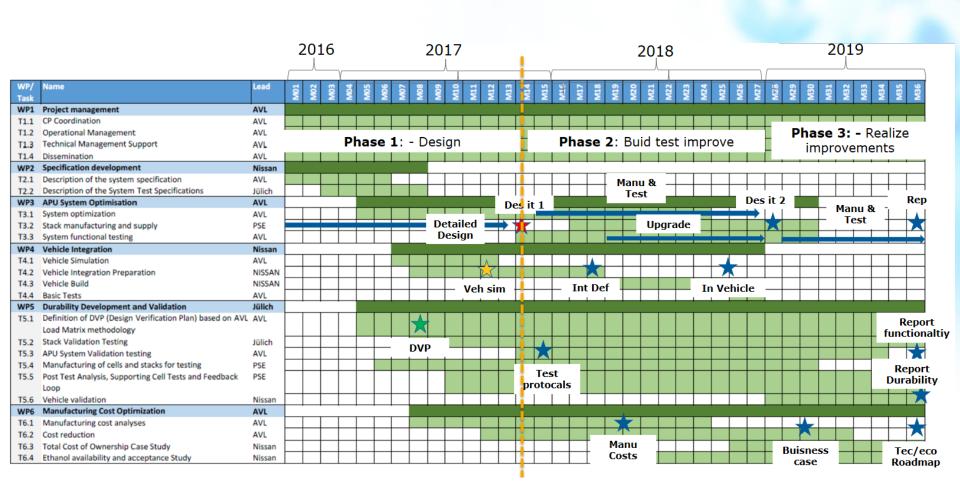
Figure 1.3a: Technology Roadmap

The project COMPASS will start on TRL 3-4 (developed mainly in MestRex) and will validate the technology under real world conditions to reach TRL 6 at the end of the project.

TRL 9

TRL 8

TRL 7

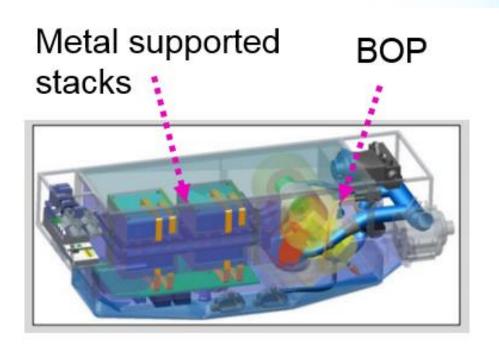

TRL 4

TRL 3

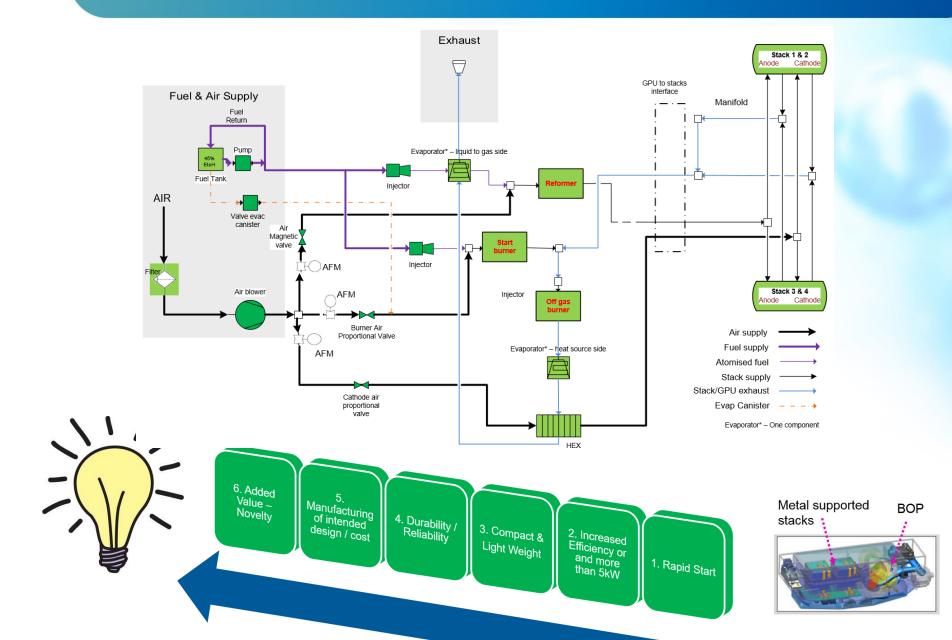
TRL 2

TRL 1

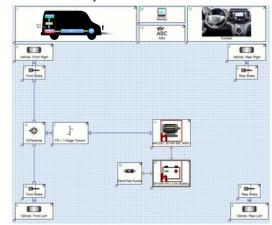
Project Overview & Content



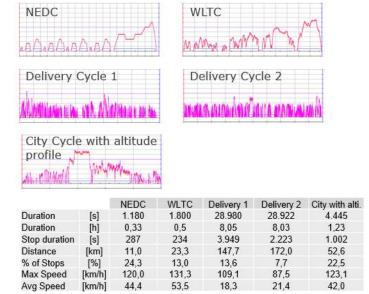
WP2/4 - Specification Development & Vehicle Integration


- ✓ System specifications
- ✓ Part specifications
- ✓ Vehicle Packaging study
- ✓ System test specifications

Test Category	Test ID Name of Test Method (including Test Procedure Number)		Test Description	Acceptance Criteria	Requirements	Test Environment
10 Functional System Develop	ment and In					
Performance Testing	10.1	Performance Simulation (Burner System)	attainability	Confirmation of Burner System Performance according to intended design	Not yet specified: Temperature Level and Thermal Power Performance of Burner System	Simulation
Performance Testing	10.2	Performance Test (Burner System)	testing of temperatur level and thermal power performance. Includes Emission evaluation described in	Temperature distribution on catalyist surface within given limits. (EHC - Electric Heated Catalyst) Thermal Power Output and Temperature Level according to specifications. Confirmation of complete burn of fuel	Not yet specified: Tepmerature of EHC surface, Temperature Level and Thermal Power Performance of Burner System	Test Rig

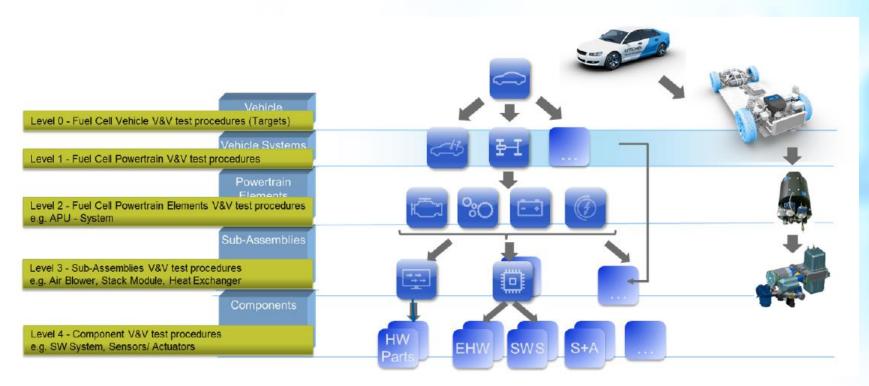


WP3 - APU system optimisation

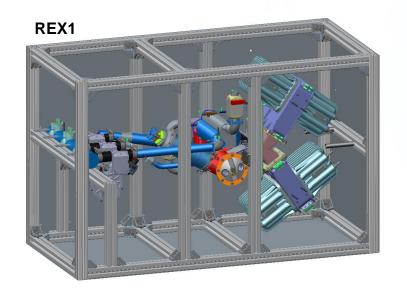


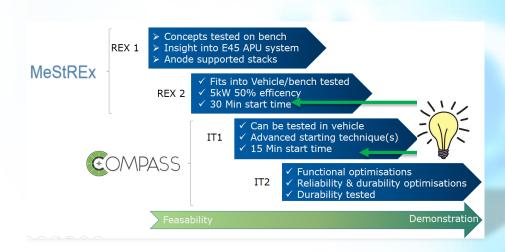
WP3 - APU system operation

Preliminary EV Cruise Model:



 Initial calculations and results validation in progress Cycle runs selected:


- EV Cruise model (Vehicle & REX), parameterization & model validation
- Power requirement's per application/drive cycle
- Operating strategies for range extension & APU system size
- Benchmark for system performance evaluation


WP5 - Durability & Validation

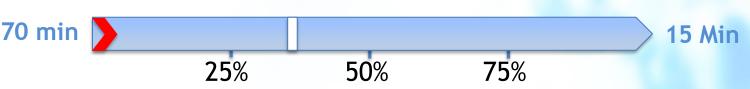
	DVP&R: Planning							
Test Category Test ID Name of Test Method (including Test Procedure Number)		Test Description	Acceptance Criteria	Requirements Documents IDs	Test Environment			
10 Functional System Develop	ment and In	tegration						
Performance Testing	10.1	Performance Simulation (Burner System)	Virtual check of required thermal performance and temperature level attainability Virtual proof of design and concept	Confirmation of Burner System Performance according to intended design	Not yet specified: Temperature Level and Thermal Power Performance of Burner System	Simulation		
Performance Testing	10.2	Performance Test (Burner System)	Proof of design and concept. Functional testing of temperatur level and thermal power performance. Includes Emission evaluation described in Test ID 10.3	Thermal Power Output and	Not yet specified: Tepmerature of EHC surface, Temperature Level and Thermal Power Performance of Burner System	Test Rig		

Next steps

- Methods & Procedure for fast start and anode protection explored.
- ✓ Itterated BOP upgrades.
- Validate communication to vehicle.
- ✓ Test component performance
- ✓ Validate BOP side of fast start concept.
- ✓ Generate know how & experience to benifit Rex 2 & COMPSS IT 1

- Validations for Rapid start simulation
- Validations for efficiency increase simulation
- Input for weight, volume & cost reduction
- Opportunities for IP closure
- Opportunities to advance technology from Mestrex limits/experience/refinments

PROJECT PROGRESS/ACTIONS

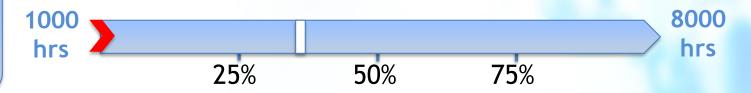

- Delay in Mestrex has caused a Delay in Compass
- Mestrex now providing key data for COMPASS!
- To-date Compass activity limited to Simulation & limited component testing
- Lessons learned mean a rapid Compass system development towards project targets (e.g. 15min start time)
- IT1 system detailed design will start in early 2018

PROJECT PROGRESS/ACTIONS - Startup Time

Example and explanation in the next slide

Aspect	Parameter (KPI)	ct Barameter (KBI) Uni	Unit	SoA	FCH JU Targets		
addressed			2017	Call topic	2017	2020	
Start up	25°C to 5kW supply	min	70 min	Pillar 1	-	-	

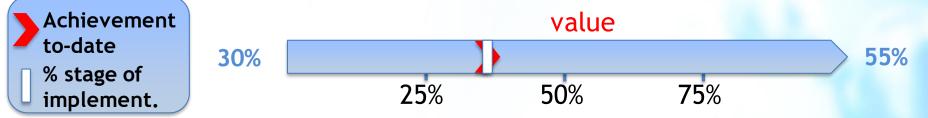
Future steps:


- Results from stack & BOP testing in mestrex before end 2017 provide
 - Validation for simulation activity
 - Insights into limitations & opportunities for advances in COMPASS
 - In 2018 targeted system operation and design for 15 minute start

PROJECT PROGRESS/ACTIONS - Durability

Example and explanation in the next slide

Aspect	Parameter (KPI)	Unit	SoA 2017	FCH JU Targets		
addressed Parameter (KPI)	Parameter (KPI)			Call topic	2017	2020
Durability	Parameter addressed	hrs	1000	Pillar 1:	-	-

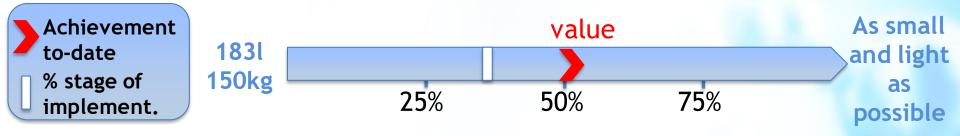

Future steps:

 Durability will be a key testing parameter for the COMPASS IT 2 system which is planned towards the end of the project.

PROJECT PROGRESS/ACTIONS - Efficiency

Example and explanation in the next slide

Aspect	Parameter (KPI)	Dorameter (KDI) Unit	Unit	SoA	FCH JU Targets		
addressed	Parameter (KPI)		2017	Call topic	2017	2020	
Aspect 1	Efficiency	%	30%	Pillar 1:	-	-	


Future steps:

• Specify next steps and actions to be carried out within the project for this aspect

PROJECT PROGRESS/ACTIONS -Volume/Weight

Example and explanation in the next slide

Aspect	Parameter (KPI)	Unit	SoA	FCH JU Targets		
addressed	Parameter (KPI)		2017	Call topic	2017	2020
Volume	Volume/Weight	L	183	Pillar 1:	-	-
Weight	Volume/Weight	Kg	150	Pillar 1:	-	-

Future steps:

Volume: AVL designs the system to the volume assigned by partner Weight: Current prediction is 50% higher than the target. Design efforts will reduce the weight significantly

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

- Interactions with projects funded under EU programmes
 - DESTA: Provided initial insights into APU design and operation on Diesel fuel for truck application.
 - Allowed a benchmark for: lessons learned, concept/design platform, system control, opportunities for improvements relating to KPIs
- Interactions with national and international-level projects and initiatives
 - MestRex: Key information from MESTREX is carried over into COMPASS.
 - BOP functionality, opportunities to increase efficiency/performance/durability
 - Validate COMPASS Simulation and allow detailed design for COMPASS IT 1
 - Mestrex targets less stringent than COMPASS, advances required!

DISSEMINATION ACTIVITIES

Public deliverables

- D1.2 Project Website
- D2.2 Summary of System Specification
- D1.2 Dissemination Activities Report

Conferences/Workshops

- 0 organised by the project
- o in which the project has participated (but not organised)

Social media

Publications:

EFCF 2018 contributions planned

Patents: 0

Thank You!

Coordinator: Vincent.Lawlor@avl.com

Speaker: Richard.Schauperl@avl.com