

Model evaluation protocol for CFD analysis of hydrogen safety issues

Computational Fluid Dynamics (CFD) for hydrogen safety analysis

Clean Hydrogen JU webinar – 7 December 2022

Daniele Melideo

daniele.melideo@unipi.it

Context

CFD is increasingly used to perform safety analysis of potential accident scenarios:

- ✓ production
- ✓ storage
- ✓ distribution of hydrogen
- $\checkmark\,$ its use in fuel cells

- CFD is a powerful numerical tool
- ... but it also requires a high level of competence and knowledge
- capability of the CFD models to accurately describe the relevant physical phenomena
- capability of the CFD users to follow the correct modelling strategy

The reliability/accuracy of the CFD results remains a significant concern

Model Evaluation Protocol - HyMEP. Clean Hydrogen

Reference document for all those groups that develop, apply and use CFD models in the area of FCH technologies and beyond

Partnership

 \checkmark To assess the user capability of correctly using CFD codes

 \checkmark To help the user to evaluate the accuracy and limitations of the CFD models themselves.

- ✓ CFD developers (academia and research institutes)
- \checkmark users (such as industry and engineering consultancy companies)

✓ regulatory/certifying

HyMEP **SUSANA** project All aspects of hydrogen safety phenomena have been considered:

- ✓ Release
- ✓ mixing and dispersion of gaseous and liquid hydrogen
- ✓ Ignition
- ✓ Fire
- deflagration, deflagration-to- \checkmark detonation transition and detonation.

Applicable to other safety-related phenomena:

- ✓ tank filling
- ✓ consequences of catastrophic rupture of a high-pressure hydrogen tank in a fire

✓ etc.

H2

SCIENTIFIC ASSESSMENT

SENSITIVITY STUDY

VALIDATION

STATISTICAL ANALYSIS QUANTITATIVE ASSESSMENT CRITERIA

ASSESMENT REPORT

Scientific Assessment

- Initial critical analysis of the model based on available knowledge in the field
- Critical review: physical, mathematical and numerical model basis
- Identify the known and/or expected weakness and strengths from available literature and knowledge
- Scientific content: Assumptions/simplifications/applicability range

Verification

 Verification is used to ensure that a mathematical model has been correctly implemented in software i.e. the equations are correctly solved

Co-funded by

the European Union

Model Evaluation Protocol - MEP

SCIENTIFIC ASSESSMENT

VERIFICATION

SENSITIVITY STUDY

VALIDATION

STATISTICAL ANALYSIS QUANTITATIVE ASSESSMENT CRITERIA

ASSESMENT REPORT

Sensitivity Study

- The user should ensure that the simulation results are unaffected by numerical errors:
 - Grid independency
 - Time-step
 - CFL sensitivity
 - Numerical scheme
 - Boundary conditions
 - Domain size

SCIENTIFIC ASSESSMENT

SENSITIVITY STUDY

VERIFICATION

Validation

- Model outputs are compared with measurements of physical parameters to demonstrate that the model captures "real world" behavior across its intended range of applicability.
- Quantitative comparison of experimental observations vs. model predictions

Model Evaluation Protocol - MEP

SCIENTIFIC ASSESSMENT

VERIFICATION

SENSITIVITY STUDY

VALIDATION

STATISTICAL ANALYSIS QUANTITATIVE ASSESSMENT CRITERIA

ASSESMENT REPORT

Quantitative Assessment Criteria

- Identification of target variables for each phenomenon under consideration
- ✓ Statistical analysis:
 - Performance parameters
 - Methodology
 - Quantitative criteria
 - · Sensitivity and uncertainty

SCIENTIFIC ASSESSMENT

SENSITIVITY STUDY

VALIDATION

STATISTICAL ANALYSIS QUANTITATIVE ASSESSMENT CRITERIA

ASSESMENT REPORT

Assessment Report

- Analysis of information supplied by model developer/expert user.
- ✓ Detailed model description
- ✓ Scientific assessment
- Verification and validation
- Sensitivity study
- ✓ Statistical analysis
- Conclusions

Keep in touch/Thank you

Daniele Melideo daniele.melideo@unipi.it

For further information https://www.clean-hydrogen.europa.eu/

