

EARLY BUSINESS CASES FOR H2 IN ENERGY STORAGE AND MORE BROADLY POWER TO H2 APPLICATIONS

Launch Event Brussels, 23rd of June 2017

PUBLIC

RESTRICTED

Acknowledgements

Objectives of P2H Early BizCases

kova979 - stock adobe co

engie

TRACTEBEL

Identify bankable Power-to-Hydrogen business cases for 2017-25 in the EU-28

Within the EU-28, **identify locations with favorable electricity conditions** for P2H systems (at sub-national level)

Study **three concrete P2H business cases** for a specific location and application (industry, mobility), quantifying key performance indicators (CAPEX, revenues, margin,..)

Derive boundary conditions for profitability and assess replicability potential in the EU-28

Key message:

There are bankable business cases for PtoH in Europe already today

- By 2025, the European market for PtoH is estimated at a cumulative 2.8 GW, representing a market value of 4.2B€ and 400 ktons H2 per year.
- Bankability can be achieved by complementing hydrogen sales with electricity grid flexibility services
- Combining PtoH for mobility/industry applications and gas grid injection is more cost-effective than stand-alone injection
- Gas grid injection is a risk mitigation instrument until H2 demand picks up
- The Clean Energy package is a unique opportunity to create a market for PtoH in oil refineries
- PtoH is a practical and system-beneficial way to value excess of RES but requires a long-term view on grid fees, taxes and levies to enable bankability

TRACTEBEL

Early business cases are found in low-cost electricity areas (≤ 40-50 €/MWh), driven by: (1) low burden of grid fees, taxes & levies (2) <u>local</u> price discounts

Total (baseload) electricity price = Total cost of supplying electricity to the electrolyser (≠ wholesale electricity price); includes grid fees, taxes, levies and green certificates for electricity purchased from the grid

7/3/2017

Network congestion can lead to local price discounts

To benefit from discounts, electrolysers need to be placed close to the source of congestion

For 5 EU member states, locations with low-cost electricity were identified Congested areas are found where there is local overproduction of RES

Selected subnational locations with low-cost electricity Numbers: local curtailment frequency (% year¹) 2017 / 2025

Comments

- Simulations with grid constraints show significant RES curtailment
- National level: mostly below 2% of total RES production, except for Denmark
- Node-level [HV/MV transformer]: massive curtailment shares in certain areas, up to 40%
- Curtailment occurs throughout the year in some locations

Important note: These areas are unique opportunities based on their RES curtailment potential. They are not representative of the rest of the country.

30/09/2016

(1) Frequency refers to the number of hours per year when partial curtailment occurs, i.e. when at least 1% of the production is curtailed.

RES curtailment is a pressing issue but linked to specific areas, as the example of Germany shows

Power-to-Hydrogen potential revenues streams: Electrical grid services should not be considered as stand-alone applications

Revenues from hydrogen sales

PtoH application	Potential revenues [k€/MW/year]
Refineries, without carbon penalty	237 – 512
Refineries, with carbon penalty	792 – 1068
Light industry market (delivery by trailer)	499 – 1235
Mobility (delivery to the HRS)	526 – 920
Hydrogen injection into gas grid based on national biomethane injection tariff ¹	171 – 350*

Revenues from grid services

PtoH application	Potential revenues [k€/MW/year]
Balancing services	2 -17
Frequency control services	70 - 224
Distribution grid services	< 1

Primary applications

Secondary applications (combinable with primary applications for little extra cost)

*Biomethane injection tariff can vary significantly depending on injection capacity and feedstock. The study considers a realistic lower revenue for hydrogen gas grid injection.

TRACTEBEL

TECH AND AVAILABLE AND AVAILABLE

Electrolysers can offer <u>low-carbon</u> grid services, often remunerated by availability (capacity), effectively decreasing the electricity price

Combining PtoH for mobility/industry applications and injection is more cost-effective than stand-alone injection for greening of natural gas

FIT rate for injecting 6MW with payback time of 8 years (ref. case **Albi-2025**)

Green H₂ **gas grid injection lowers the carbon footprint of natural gas** and should thus be **eligible for feed-in tariffs** in line with existing supporting regimes for bio-methane.

Combining injection with mobility or industry reduces the level of feed-in tariff needed.

The bulk of the electrolyser CAPEX is paid by mobility or industry clients. The injection tariff only needs to cover marginal injection costs (and very limited injection-specific CAPEX).

For this reason, H_2 injection into gas grid is considered as a secondary application

Should the stand-alone injection business case have a tariff of 73 €/MWh, the payback time will more than double to > 16 years.

Three different business cases were analysed in three regions both 2017 and 2025

Semi-Centralised production for mobility (Albi-FR)

On-site production for mobility can generate profitable business cases but is excluded due the fact it has been covered intensively in previous studies.

engie

Scope

Boundary

2-12 MW **PEM On-site** 6-7 €/kg storage Fuel Fuel **Regional** network of hydrogen stations

Light industry Food oil factory (Trige-DK)

Large industry Refinery (Lübeck-DE)

TRACTEBEL

CAPEX assumption of boundary scope: SC mobility: 3660 k€/MW (2017); 1900 k€/MW (2025) / Food industry: 1760 k€/MW (2017); 1400 k€/MW (2025) / Large industry: 1400 k€/MW (2025) / Large industry: 1400 k€/MW (2025)

Bankable business cases were found in the best locations 1

WACC on CAPEX: 5% Project lifetime: 20 years	SC m (Albi, l	obility France)	Food ir (Trige, D	ndustry enmark)	Large i (Lubeck,	ndustry Germany)
	2017	2025	2017	2025	2017	2025
Primary market H2 volume (t/year)	270	950	900	900	3 230	3 230
Average total electricity price for prim. market (€/MWh)	44	45	38	47	17	26
Net margin without grid services (k€/MW/year)	39	71	228	248	-146	30
Net margin with grid services (k€/MW/year)	159	256	373	393	-13	195
Share of grid services in net margin (%)	75%	72%	39%	37%	-	85%
Payback time without grid services (years)	11.0	9.0	4.6	3.7	-	8.4
Payback time with grid services (years)	8.0	4.5	3.4	2.7	-	3.5
Key risk factors	 Taxes & H2 price Size of f Injection FCR value 	Grid fees leets tariff ue	 H2 price Taxes & FCR value 	Grid fees Je	 Taxes 8 FCR val Carbon 	Grid fees lue price

Fuel

Profitable stand-alone primary applications have a payback time ranging between 4 and 11 years. Providing grid services can reduce payback time by 30-50%.

7/3/2017

TRACTEBEL

to reduce carbon footprint of fuel production. The electrolyser complements local SMR.

Deep dive on Refinery in Germany (Lübeck / Hemmingstedt)

- 2017 & 2025: 3230 t/year (50% of increasing demand) \rightarrow 20 MW electrolyser
- The PtoH system is oversized by 200% to compete against the SMR production

Local refinery

Scenario

Four local refineries near Lübeck

• 3 in Hamburg @ 70 km from Lübeck

Local context

- Heide refinery is the one with the highest H₂ demand with 3.4 t/h (**30 000 t/year**)
- On-site SMR is considered to supply the current H₂ demand

• 1 in Hemmingstedt / Heide @ 110 km from Lübeck

Context, Local refinery and Scenario

17

engie

TRACTEBEL

PtoH can compete with H₂ production from SMR at big volume

Main parameters	2025		
Grid fees, taxes, levies and Guarantee of origin (DE)	1.7 €/MWh (EnWG §118)		
Grid service value	19 €/(MW.h) (FCR)		
Carbon penalty	80 €/tCO ₂ 1		
Value H ₂ from SMR incl. carbon penalty	2.6 €/kg (prim.) 2.4 €/kg (NG subs.)		
Primary market size	3 230 t/year → 20 MW		
Unit sizing	200% w/ NG sub.		
Technology	PEM		
Op. time and total elec. price (prim.)	48% @ 26 €/MWh		
Op. time and total elec. price (NG Sub.)	47% @ 34 €/MWh		
H2 production cost	2.3 €/kg		
Payback time	3.5 years		

NG substitution allows valorisation of remaining electrolyser capacity by bringing additional revenues from electrical grid services.

PtoH production cost can be competitive against SMR. **Payback time with grid services is 3.5 years**.

03/07/2017

engie

Hinicio

Food industry business case profitability

Main parameters	2017		
Grid fees, taxes, levies and Guarantee of origin (DK)	11 €/MWh		
Grid service value	17 €/(MW.h) (FRR)		
H ₂ market price	5€/kg		

Primary market size	900 t/year \rightarrow 6 MW		
Unit sizing	100% w/o Injection		
Technology	ALK		
Op. time and total elec. price (prim.)	95% @ 38 €/MWh		
H2 production cost	3.5 €/kg		
Payback time	3.4 years		

Light/food industry as a primary application for PtoH is **already a profitable and existing market**.

However, PtoH can benefit from providing grid services to generate additional revenues which can **boost the net margin by 39% at little additional investment.**

Asymetric grid services benefit to ALK electrolyser by taking advantage of their cheaper cost.

TRACTEBEL

03/07/2017

Hinicio

Semi-centralised production for mobility business case profitability

Main parameters	2017
Grid fees, taxes, levies and Guarantee of origin (FR)	13 €/MWh (incl. partial exemption because of electro-intensive status)
Grid service value	18 €/(MW.h) (FCR)
HRS distance	20 km one-way
H ₂ market price	7 €/kg

Primary market size	270 t/year \rightarrow 2 MW		
Unit sizing	100% w/o injection		
Technology	PEM		
Op. time and total elec. price (prim.)	95% @ 44 €/MWh		
H2 production cost	6.7 €/kg		
Payback time	8 years		

Mobility as a primary application for PtoH can be **profitable today at large volume**.

Provision of grid services can **boost significantly the net margin by 75% at little additional investment.** This will accelerate the **payback time from 11 to 8 years.**

03/07/2017

TRACTEBEL

Gas grid injection is a short-to-mid-term risk mitigation instrument through the valley of death for mobility market

Gas grid injection is an enabler of Power-to-Hydrogen for mobility applications

- Gas grid injection is a complementary application that can increase the revenues of an electrolyser used for mobility or industry.
- Gas grid injection helps mitigate the risk of lower-than-expected mobility demand ("valley of death") covering the operation costs and part of asset depreciation towards breakeven.
- aCAPEX
 OPEX
 OPEX
 Primary

Mobility business case Forecasted demand: 270 t H₂/year 2 MW PEM in FR (Albi) 2017 Injection tariff @ 90€/MWh LHV

Rule of thumb: PtoH business cases profitability depends on: (1) primary market size, (2) hydrogen selling price and (3) average electricity cost

From boundary conditions to market potentials: 3 Business Cases \rightarrow 4 Countries \rightarrow EU-28

Geographical match between low-cost H_2 supply (\rightarrow discounted electricity) and H_2 demand

RES curtailment location

H₂ demand location

Potential FCR revenues: capped to 335 MW electrolyser capacity¹ (~20% of FCR market in FR, DE, DK, GB)

TRACTEBEL

By 2025, the European market for PtoH is estimated at a cumulative 2.8GW, representing a market value of 4.2B€.

EU-28 market potential	Cumulative market size	Market value	H2 Volume
2017	1500 MW	2.6 B€	200 ktons/year
2025	2800 MW	4.2 B€	400 ktons/year

Bankability boundary conditions:

Average electricity cost of 40-50 €/MWh or lower (incl. grid fees, taxes & levies), depending on country-specific regulations.

Enhancing conditions for replication:

- Access to curtailed RES at a price discount of 60% compared to the system price;
- Partial exemption from grid fees, taxes & levies.
- Recognition of green H₂ as compliance option in Fuel Quality Directive

TRACTEBEL

Policy options to realize this market potential

Business cases replicability relies on:

 \rightarrow Exemption from grid fees, taxes or levies

A (partial) exemption can be justified by the grid-beneficial mode of operation of electrolysers

→ Avoid inflating electricity prices with costs unrelated to electricity supply

\rightarrow Access to curtailed electricity

Bilateral contracts between RES operators and consumers can lead to lower electricity price

→ Provide a clear regulatory framework on how to access curtailed RES electricity

Access to grid service revenues

→ Electrolysers can provide grid frequency control when allowed for loads, with more benefits in asymmetric procurement

→ Develop EU framework guidelines to provide a level playing field for access to grid frequency control services

3

engie

2

Recognition as green hydrogen

- \rightarrow Power-to-hydrogen electrolysers can provide gas with low carbon intensity
- → Provide a level playing field for the injection of carbon lean gas into gas grid, be bio-methane or green hydrogen
- → Recognize green hydrogen as compliance option to reduce carbon intensity of conventional fuels in the forthcoming revisions of the FQD and RED II

