# **STAYERS**

Stationary PEM fuel cells with lifetimes beyond five years

# FCH-JU 256721

Programme Review Day 2011 Brussels, 28 November

Jorg Coolegem Nedstack fuel cell technology





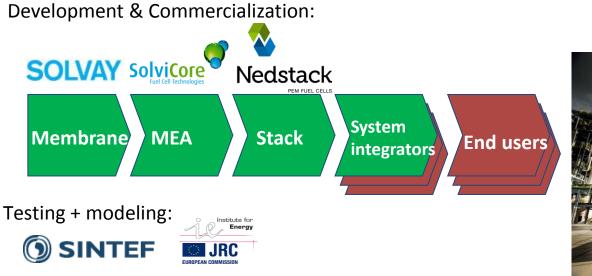
Stationary PEM fuel cells with lifetimes beyond five years

#### Themes:

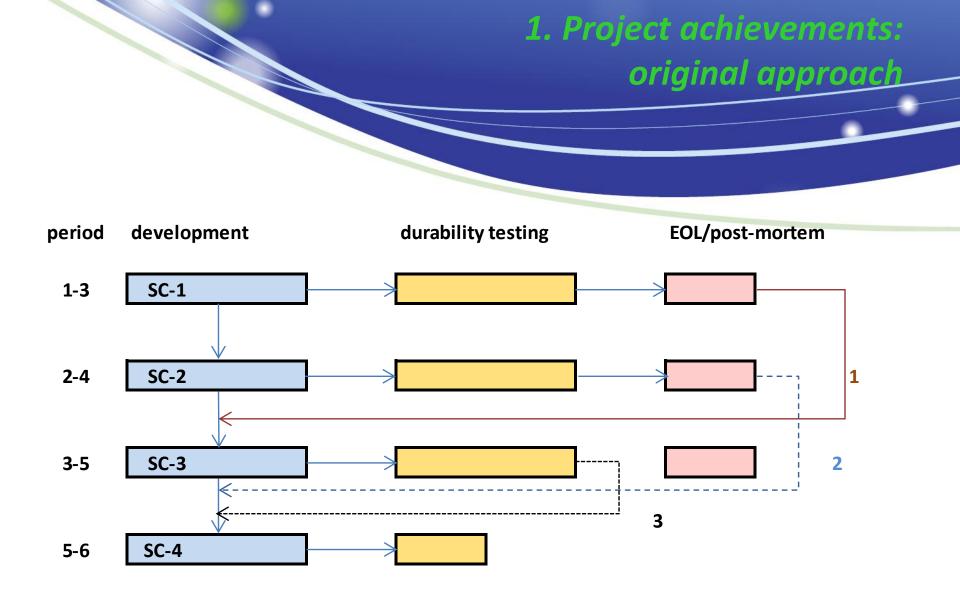
| SP1-JTI-FCH.2009.3.2: | Materials development for cells, stacks and balance of<br>plant         |
|-----------------------|-------------------------------------------------------------------------|
| SP1-JTI-FCH.2009.3.1: | Fundamentals of fuel cell degradation for stationary power applications |

| Duration:       | 36 months; 1 January 2011 - 31 December 2013 |
|-----------------|----------------------------------------------|
| <u>Budget</u> : | 4.1 M€                                       |
| FCH-JU funding: | 1.9 M€                                       |

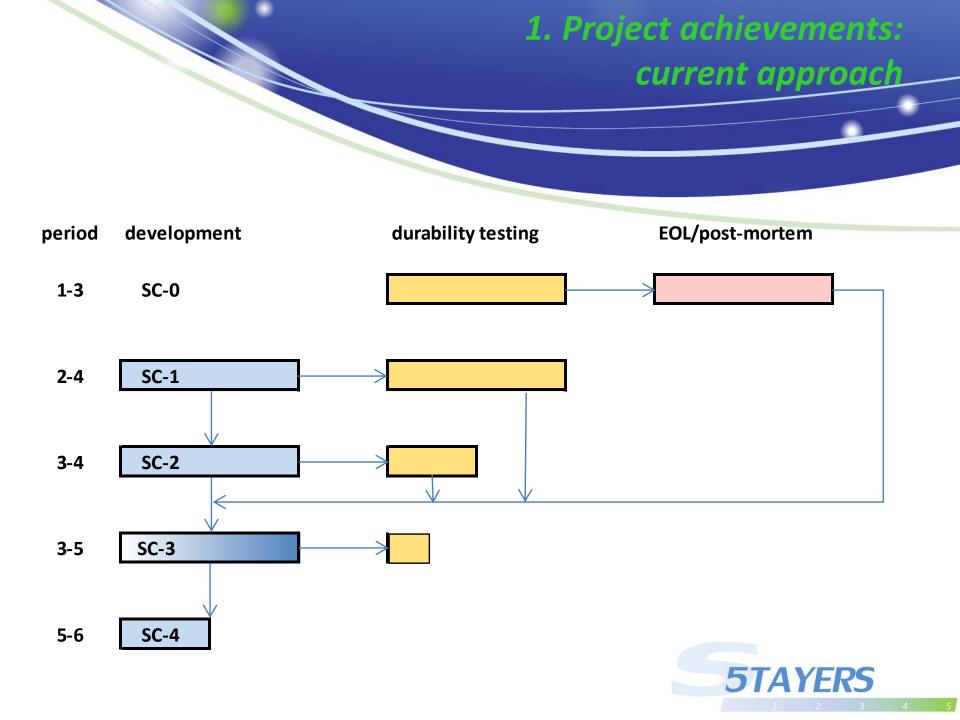



# 1. project & partnership description 1 2 3 4 5

#### <u>Goal</u>:

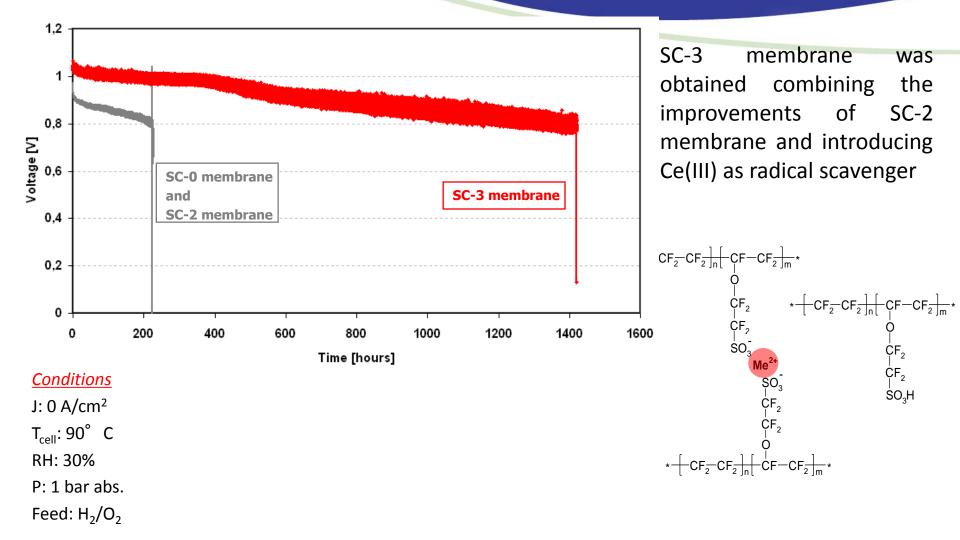

> 40.000 hours stationary operation lifetime of PEM fuel cell

#### Motivation:


lower replacement frequency PEMFC stacks over economic lifetime Power Plant  $\rightarrow$  lower cost of ownership PEMFC Power Plant

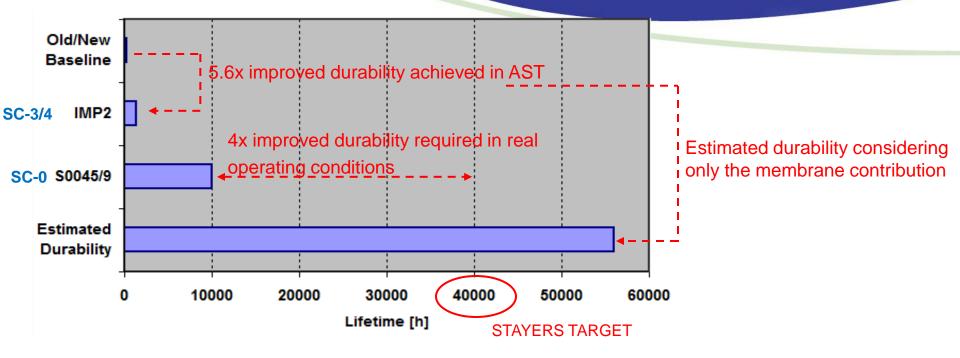












## 1. Project achievements: WP-2 Membrane development

#### Improved membrane lifetime (AST)



# 1. Project achievements: WP-2 Membrane development

#### MS 2.1/2.2 - Demo Improved Durability



- WP2 developed different generations of membranes showing improvements in membrane quality and in their durability in AST's
  - MS 2.1 First membrane (SC-0) showed proven lifetime >10.000 hrs
    - No substantial degradation observed in eol/post-mortem tests
  - MS 2.2 Last membrane estimated to surpass 40.000 hrs based on AST (SC-3+4)

#### **Evolution of MEA generations in course of STAYERS (simplified):**

| <b>MEA</b> generation | Membrane     | Electrode                | RIM type           | objective                                                          |
|-----------------------|--------------|--------------------------|--------------------|--------------------------------------------------------------------|
| SC-0                  | old baseline | CCB type 1&3             | 4-layer            | reference                                                          |
| SC-1                  | new baseline | CCB type 3               | 2-layer            | apply new baseline membrane                                        |
| SC-2                  | IMP-1        | CCM - based<br>on type 3 | simplified 2-layer | apply new membrane, CCM & process automization, improve durability |
| SC-3                  | IMP-1&2      | CCM rainbow              | simplified 2-layer | improve durability, conditioning, costs                            |
| SC-4                  | IMP-1&2      | CCM multiple             | simplified 2-layer | demo 40.000 hrs                                                    |

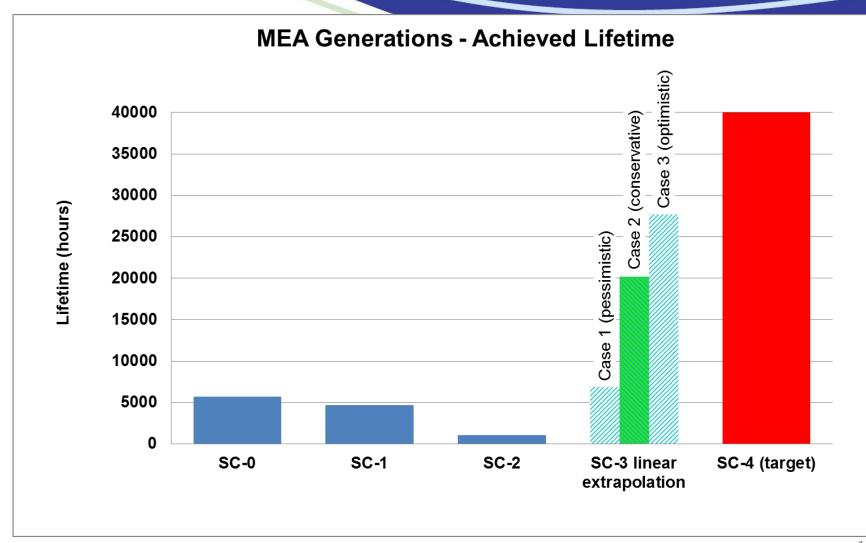
- SC-3 (multiple variations) is object of current labour
- SC-4 to be selected by operational data of SC-3



#### MS 3.1: Results EOL/post-mortem analyses SC-0

| Component              | Property                  | ∆ EOL-BOL |
|------------------------|---------------------------|-----------|
| Cathode catalyst layer | ECSA                      | - 50%     |
| Cathode catalyst layer | Proton resistance         | +50%      |
| Anode catalyst layer   | ECSA                      | - 30%     |
| Membrane               | H <sub>2</sub> cross over | +5%       |




#### MS 3.1 Results EOL/post-mortem analyses – SC-0

| Component              | Property                  | ∆ EOL-BOL |
|------------------------|---------------------------|-----------|
| Cathode catalyst layer | ECSA                      | - 50%     |
| Cathode catalyst layer | Proton resistance         | +50%      |
| Anode catalyst layer   | ECSA                      | - 30%     |
| Membrane               | H <sub>2</sub> cross over | +5%       |

#### Conclusions

- Cathode catalyst layer dominates performance loss
- Anode catalyst degradation
  - theoretically no contribution to decay, but substantial contribution in presence of contaminants
- Membrane shows no substantial degradation

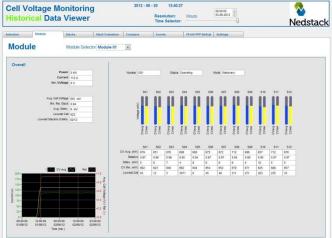




# 1. Project achievements: WP-4 Stack development

| MS 4.1 | Assesment 1 of stack performance     | Lifetime (hrs) |           |                     | improvement |
|--------|--------------------------------------|----------------|-----------|---------------------|-------------|
| WP 4   | component                            | proven         | estimated | status              | required    |
|        |                                      |                |           |                     |             |
| 4.1    | coolant FF                           | > 17.000       | 40,000    | ok                  | NO          |
|        | Anode FF                             | > 17.000       | ?         | under investigation | ?           |
| 4.2    | I. cell plates                       | > 17.000       | 40,000    |                     |             |
|        | permeability & dimensional stability |                |           | under investigation | ?           |
|        | hydrophobicity                       |                |           | under investigation | ?           |
|        | conductivity                         |                |           | ok                  | NO          |
|        | II. Seals                            | > 17.000       | 20,000    | in development      | expected    |
|        | III. Housing & mounting              | 20.000+        | 20.000+   | in development      | YES         |
|        | improve leak resistance              |                |           | in development      | YES         |
| 4.3    | Power plant                          |                |           | operational         |             |
|        | improve operation & flexibility      |                |           | to be investigated  | ?           |

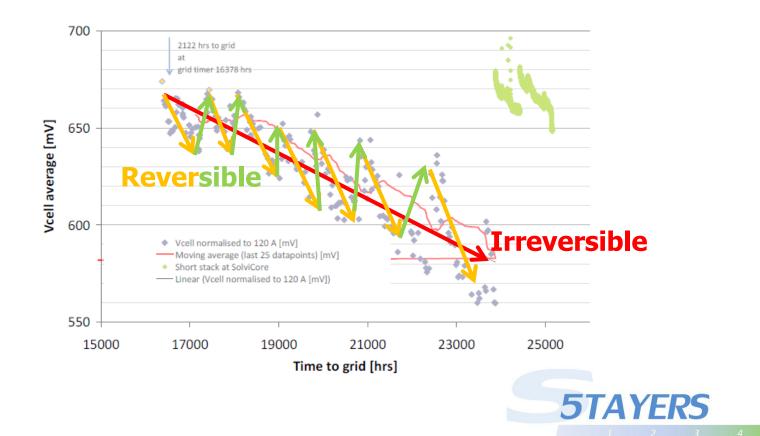



# 1. Project achievements: WP 4.3 Set up and stack duration tests

#### Deliverable 4.1

- Revised system with 2x6 stacks
- 6 positions used for Stayers
- Set point 70 kW ~120 A
- Total hrs to grid M1-M20: >11.000
- Software tool for data collection & analysis




**5TAYERS** 

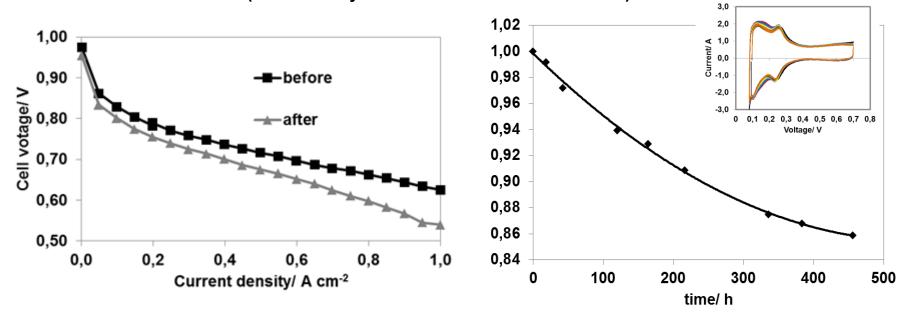


# **1. Project achievements:** WP 4.4 data collection and analysis

#### **Durability tests power plant SC-0**

#### **Divided in reversible and irreversible effects**




## 1. Project achievements: APP 5 accelerated durability investigations

0.7

60 s

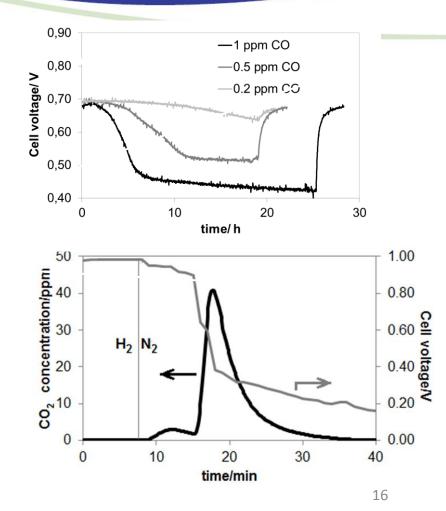
#### Irreversible decay: Accelerated stress tests for cathode electrode

- Representative AST derived from operating profile
- 900 hours cycling 0.7 V 0.9 V
- clear performance decrease
- Cathode catalyst active surface area decreases
   30% in 900 hours (ref Delfzijl 25-35% in 6-10.000 hrs)



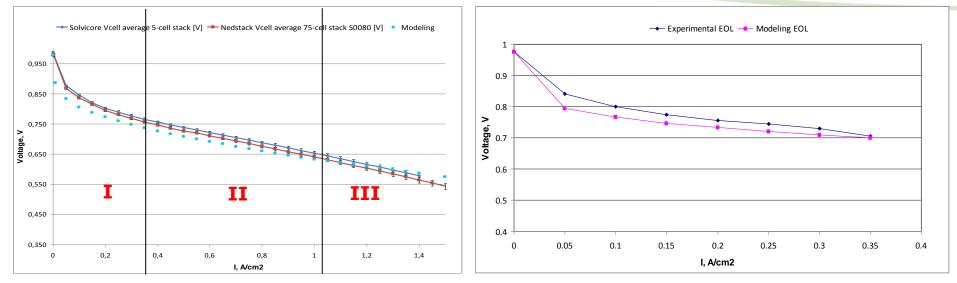
0.7

0.7


0.7

# 1. Project achievements:

#### Reversible decay: CO stripping of electrode after anode poisoning


- CO added to anode gas (SC-2)
- Reversible effect, performance back to normal when CO is removed
- FTIR analysis (CO<sub>2</sub>) of anode gas outlet shows typical CO stripping when flushing anode with nitrogen

=> Large amounts of CO left on the catalyst despite performance is back to normal



# 1. Project achievements: WP-6 Modelling and data analysis

# MS 6.1: Model validated with experimental data SC-0 (BOL resp EOL) of IV-Polarization curves



I - kinetic regime – differences attributed to effects associated with unknown kinetic constants

- II -voltage drop due to ohmic losses
- III mass transfer limitations



### 2. Alignment to MAIP

#### **STAYERS** in the Multi Annual Implementation Plan Structure



#### Market Support (SME Promotion, Demand Side Measures, etc.)

| Demonstrations                                                                   |                                          |                                                        |      |  |
|----------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------|------|--|
| Vehicles &<br>Infrastructure                                                     | Low Carbon<br>Supply Chain               | System Readiness<br>Manufacturability Micro/Portable F |      |  |
| Technology, Sustainability & Socio-economic Assessment<br>Framework, RCS and PNR |                                          |                                                        |      |  |
| Res                                                                              | arch and Techno                          | ological Develop                                       | ment |  |
| Stack &<br>Subsystems                                                            | Processes &<br>Modules                   | Periphery & Systems &<br>Components Integration & Te   |      |  |
| Components                                                                       | New Technologies                         | Material & Design & Degradation & Durability           |      |  |
| Long-term and Breakthrough Orientated Research                                   |                                          |                                                        |      |  |
| Transport &<br>Refuelling<br>Infrastructure                                      | Hydrogen<br>Production &<br>Distribution | Stationary<br>Power<br>Generation & CHP                |      |  |

#### **Stationary Power Generation & Combined Heat & Power**

"Long-term and breakthrough orientated research will concentrate on degradation and lifetime fundamentals related to materials and typical operation environments for all power ranges. The aim will be to deliver new or improved materials as well as reliable control and diagnostics tools both at a component and at system level."

2. Alignment to MAIP

"Research and technological development will be directed towards developing components and sub-systems (including BoP) as well as novel architectures for cell and stacks leading to step change improvements over existing technology in terms of performance, endurance, robustness, durability and cost for all three technologies." (PEMFC, MFC, SOFC)

# 2. Alignment to MAIP

#### <u>Goal</u>:

- > 40.000 hours lifetime in stationary operation of PEM fuel cell
  - ▶ lower replacement frequency PEMFC stacks  $\rightarrow$  lower cost of ownership PEMFC Power Plant

#### **STAYERS contribution to MAIP**:

- Understand degradation mechanisms in current generation PEMFC
  - Membrane  $\rightarrow$  successful introduction of scavengers
  - MEA identification of predominant degradation mechanisms
  - stack components flow field, cell plate, sealants, stack housing
  - modeling & AST development
- Deliver improved materials
- Develop diagnostic tools:
  - Components: membrane, MEA, flow field, cell plate, sealant, stack housing
  - System: software tool combining stack performance with process conditions, diagnostic system tests to be implemented
- Operating conditions to be optimized
  - Recovery protocols
  - Reactant purity