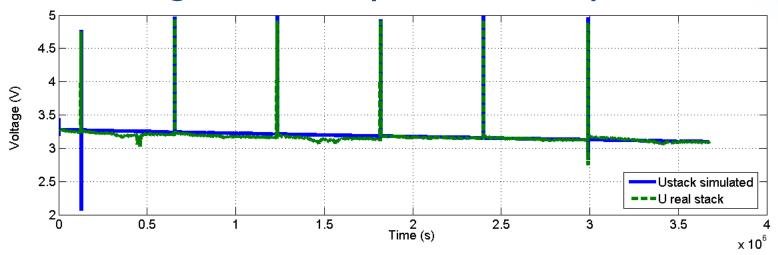
<u>System Automation of PEMFCs with</u> <u>Prognostics and Health management</u> for Improved <u>Reliability and Economy</u>

SAPPHIRE 4 325275

Federico Zenith SINTEF www.sapphire-project.eu

PROJECT OVERVIEW

- **Topic:** Robust, reliable and cost-effective diagnostic and control systems design for stationary power and CHP fuel cell systems
- Area: Stationary power production and CHP
- When: May 2013 April 2016
- **Budget**: 3.25 M€ (FCH: 1.75 M€, NFR: 650 k€)
- Consortium:



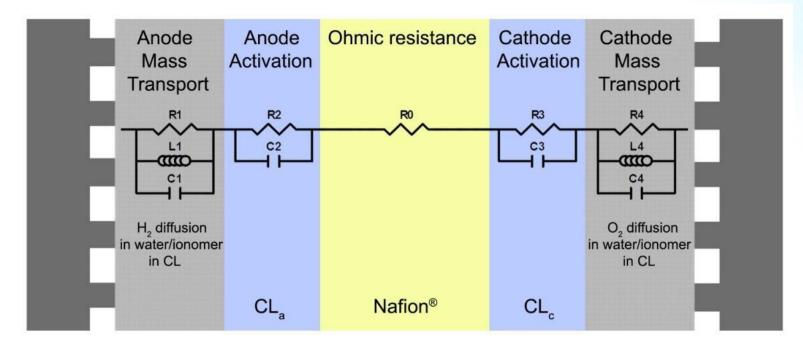
- Idea: increase life of PEMFCs in µCHP with smart control; optimise with prognostics
- Progress: 85% through project; on time

Programme objective/target	Project objective/target	Project achievements to-date	Expected final achievement
MAIP			
30 000 h	20 000 h (current tech)	Ran 9000 h <i>Projected</i> 50 000 h	> 20 000 h
AIP			
20 000 h (current tech)	20 000 h (current tech)	Ran 9000 h <i>Projected</i> 50 000 h	> 20 000 h
< 100 €/kW	< 100 €/kW	136 €/kW	68 €/kW

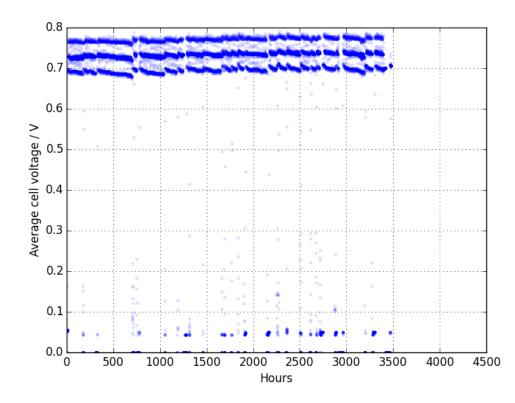
- Control/diagnostic system for:
 - Optimal air bleed
 - Humidity control
 - Anodic lambda
- High-precision prognostics **FC LAB** learning until 2nd peak, then prediction

() SINTEF

Testing protocols



Long-term and accelerated


• New equivalent circuit model

- R4 is a good prognostic variable

3000+ h tests on 2 µCHP systems
 – Each previously used 5000 h

- Nominal:
 2 µV/h

RISKS AND MITIGATION

- Few degrees of freedom in µCHP
 - Control can do little optimisation
 - Little integration with prognostics
 - Focus on rejuvenation techniques
 - Regular start-stops?
 - Variable load?
- Can the low-degradation in Dantherm's tests be replicated?

- New tests to identify direct causes

- All original targets stand \checkmark

SYNERGIES WITH OTHER PROJECTS AND INITIATIVES

- Additional financial support from Norwegian Research Council (650 k€)
- Previous projects
 - D-Code (EIS with DC/DC converters)
 - Diapason 1 & 2 (PEMFC diagnostics)
 - KeePEMalive experimental data
- Current collaborations
 - ReforCELL (reformers for µCHP)
 - Invited to workshop to present SAPPHIRE

DISSEMINATION ACTIVITIES

- 14 international conference contributions
 - HFCNC, EAR, UECT, CARISMA (×2), IDHEA,
 VPPC (×5), IEEE PHM, EFCF, ADCHEM
- 2 articles published (+1 submitted)
- Invited session at VPPC2014
 - "Upgraded" workshop
- Programmed: Hanover Fair 2016
 - "Final event" at high-impact industrial fair
- Two patents being sought

- One whole consortium, one EIFER only

EXPLOITATION PLAN/EXPECTED IMPACT

- Main Results:
 - A lot of degradation is not irreversible as thought
 - Equivalent model shows good prognostic variables
 - Precise and validated prognostics
 - New control techniques for humidity, CO, anodic λ
 - Minimal new equipment (one pressure sensor)
- Impact
 - Long-term degradation reduced by factor 10
- Exploitation
 - Dantherm embeds new technology in their μCHP
 - Technology may be licensed to other companies