METSOFC

"Development of next generation metal based SOFC stack technology" GA no: 211940

Niels Christiansen Topsoe Fuel Cell A/S, Denmark

Main objectives in METSOFC:

- Development of novel metalsupported cell and stack SOFC tech nology based on product definitions and test protocols defined by APU end users.
- Development and optimize novel materials, design and manufacturing processes for metal based SOFC stack prototypes governed by crucial product requirements.

Project goals, targets and milestones

Ceramic based Anode-supported cell

LSCF
CGO
YSZ
Ni+YSZ

Metal-supported cell *"beyond State of the Art"*

LSCF				
CGO				
ScYSZ				
Novel anode				
Stainless				
steel				

- Improved functionality
- Improved reliability
- Improved robustness
- Reduced cost

Cost effective materials Cost effective processing

Technical Approach

LEAN Development

- Project groups (WPs) with a strong background competences
- Vertical integrated project structure (no overlap between partners)
- Several links to other SOFC projects (EU, national, in-house)
- Rapid cell and stack prototypes at optimal scale for test
- Rapid critical optimization loops (critical iteration)

Critical iteration (Lean spirals) based on new acquired knowledge Effective short cuts for rapid feedback of information and results

Technical accomplishments

Metal supported SOFC fabrication

Vacuum furnace sintering

Major challenge: Co-sintering technology

Up-scaling cells

Red-ox stability of ASCs (Ni/YSZ anode substrate) and metal supported SOFCs : OCV (top) and performance degradation (bottom), tested at 800 $^{\circ}$ C

MSC (3G) Better Cell Performance than 2,5G (state of the art anode-supported cell)

Transportation applications

Redox cycles @Operating Temp.	>30	major system malfunction, shut down under oxygen environment	
Deep Thermal cycles (temperature <100°C)	>300	full cool down, approx. 1x per week	
Medium Thermal cycles (temperature >100°C) >3000		cool down phases, when no current is requested from operator	
Warm-up	<30 min		
Stack Costs	< 200 US\$/kW	costs for system integrator	

Technical accomplishments

Progress towards performance indicators

Components	Targeted performance values			
Metal supports	Surface area			
	< 0.02 m ² /g, (25% porosity)			
	Corrosion weight gain and oxide thickness of metal support			
	< 0.4mg/cm ² (after 1000 h, 850°C at simulated 90% FU)			
	< (coated materials)			
Cells G1	Performance ASR			
	< 1 Ωcm ² , (650 °C)			
	< 1.5 Ωcm ² , (650 °C, reformate)			
	Δ ASR < 3% / 1000 h			
	Mechanical			
	Strength > 250 MPa			
	Weibull > 10			
Cells G2	Performance ASR			
	< 0.5 Ωcm ² , (650 °C)			
	< 0.8 Ωcm ² , (650 °C, reformate)			
	∆ ASR < 0.05% / 1000 h			
	Mechanical			
	Strength > 350 MPa			
	Weibull > 15			
Interconnect materials	Corrosion cyclic oxidation in air, weight gain, ASR, Cr loss			
	Total Cr loss (hours until 16% Cr bulk content)			
	Weight gain < 0.1 mg/cm ² kh.			
Stacks	Performance ASR			
	< 0.8 Ωcm^2 (or not more than 0.2 higher than for the cell)			
	∆ ASR < 3% per kh, (< 1% per kh)			
	Mechanical			
	△ ASR (OCV, number of broken cells)			
	Up-scaling			
	Two next gen (2G+) 50 cell stacks			

All development steps are characterized by targeted performance values and compared with presented SoA data in literature.

Best (published) performance and durability of MS-SOFC

* Not published data

Institute	Active area (cm²)	Temperature (°C)	Power density* (W/cm²)	Degradation
Risø DTU	0.5 16 82	650 650 680	1.14 (at 0.6V) 0.60 (at 0.6V)* 0.25 (at 0.85V)*	1%/kh
DLR et al.	12.56 81.4	800	0.609 (at 0.7V) 0.384 (at 0.7V)	2.5%/kh
Plansee, Jülich	1 16 80	800-820	1.064 (at 0.7V) 0.530 (at 0.7V) 0.840 (at 0.7V)	Issues with low OCV
KAIST	Button cell	800	0.6	
lkerlan	4-16	800	0.45	
Ceres		570	0.14 (at 0.75V)	
NRC Canada	Button cell 16	650	0.53 0.27	Issues with low OCV

The METSOFC project has been presented in presentations and posters at a number of international conferences and research networks

- More than 20 presentations and posters at conferences
- More than 10 peer reviewed papers in relevant scientific journals
- METSOFC project presented at various national strategy group meetings on SOFC.

