

CLEARgen Demo

+ CG Démo

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Daniela Laursen

Ballard Power Systems Europe A/S

www.cleargen.eu

dla@ballardeurope.com

W5H62991

PROJECT OVERIVEW

- **Call year: 2011**
- generation and other relevant commercial or industrial applications
- Project dates: 01/05/2012 30/09/2020
- % stage of implementation 01/11/2017: 60%
- **Total project budget: 10.343.142,60 €**
- FCH JU max. contribution: 4.590.095 €
- **Centre National de la Recherche Scientifique (FR)**

Call topic: SP1-JTI-FCH.2011.3.6 Field demonstration of large stationary fuel cell systems for distributed

Partners: Ballard Power Systems Europe (DK); Hydrogene de France (FR); Aquipac (FR); JEMA Energy (ES);

PROJECT OBJECTIVES

1) The validation of the technical and economic readiness of the fuel cell system at the megawatt scale, and

for the European market

chemical production plant.

applications.

- 2) The development and construction of a large scale fuel cell system, purpose-built

3) The field demonstration and development of megawatt scale system at a European

The demonstration site was chosen for the ability to provide a strong reference case so as to convince future operators of the relevance of large scale stationary fuel cell

CLEARgen Demo Site

Sara Refinery, Martinique (FR)

SARA owns a refinery in Martinique, as well as hydrocarbon deposits in Guadeloupe and Guyana. <u>http://www.sara-antilles-</u> <u>guyane.com/energies-nouvelles/</u>

This refinery is generating a large amount of by-product hydrogen

Will use the CLEARgen power generation system to produce electricity

State of the art

PEM for large stationnary fuel cell

are:

- MCFC: More than 100 installations until 3 MW power and more.
- SOFC: High efficiency especially for CHP (combined heat and power).
- PEMFC: Versatile solution adapted for different market (mobility, PtP).

No commercial product is available for high power (>1 MW) even if several demonstrations are performed: 1MW in Belgium and in US, 2 MW in China.

For large stationnary fuel cell, three main technologies in place or under development

Application and market area

Hydrogen for energy market

Large stationnary fuel cells systems are a key component for :

- Distributed power market
- Power to power solutions for mass storage energy (renewable sources)

technology by:

- Supplying purification system of hydrogen (=> opportunity to use any hydrogen source) Integrate strong standards of a refinery site (=> ability to suit high standard)
- Cumulating site constraints (wind, seismic, safety) (=> possibility to be implemented evrywhere)
- Connecting the fuel cell to a public grid (=> following standard requirments for electricity)

The project demonstrates the ability of fuel cell to provide adapted solution and the readiness of the

Achieved results

2016 - 2018

 Purifications system (PSA) produced, certified

• 2 x 500 kW power banks produced, certified and **FA-tested**

 Layout and design of the site achieved

2016

Investor to fund the project (return on capital based on 15 years operation)

CLEARgen targets

Against SP1-JTI-FCH.2011.3.6 Objectives

Large stationary FCH systems	FCH JU project's results 2018	SP1-JTI- FCH.2011.3.6	SP1-JTI- FCH.2011.3.6 Objectives
Lifetime (between FC refurbishment)		>	10.000 h
Electrical Efficiency		=	50% (long term goal)
Cost	\bigotimes	<	3.0 Mil €/MW
Performance Loss		<	3%
Availability		NA	NA
Service and Maintenance Cost		NA	NA

Coming milestones

Pictures can be added according to the content

Commissioning and Operation

Installation on site

Shipping og FC Power Banks and Purification System

Finalizing the civil work

PROJECT PROGRESS – Supply fuel cell for European market

333 kW test bank

 1MW fuel cell was built (compound of 2 x 500 kW power bank)

 \odot Start up time : 200 kW

Efficiency : 46,8 % for bank 1 and 46,4 % for bank 2 (at full load)

An efficiency above 50% is measured at lower load

CE certified

 \Rightarrow The system is being shipped to Martinique

PROJECT PROGRESS – Integration of large stationary fuel cell

Refinery site

- Purification system was designed and built (Pressure Swing adsorption system)
- Detail engineering was performed and the site layout was realized
- 4 work contracts were ordered:
 - Civil work
 - \circ Steel structure
 - Pipelines
 - Electricity & Instrumentation

 \Rightarrow Civil work is currently in progress

PROJECT PROGRESS – Business model for large stationary fuel cell

PPA* for other energy

- * PPA: Power Purchase Agreement
- Promoting to French government and local authorities of hydrogen fuel cell technology for energy market
- PPA contract Signed with grid operator and validated it by French regulator (24th of July 2018) based on :
 - 15 years of operation
 - Tariff of electricity : 233,70 €/MWh
 - Hydrogen cost around 1 €/kg included

 \Rightarrow Adapted Business model for Continental Europe \Rightarrow Integrated cost projection

Participaient à la séance : Jean-Francois CARENCO, président, Christine CHAUVET, Catherine EDWIGE, Hélène GASSIN, Jean-Laurent LASTELLE et Jean-Pierre SOTURA, commissaires.

Risks and Challenges

Main challenge/bottlenecks encountered:

- Find appropriate site •
- Integrated safety strategy to comply with CE certification of the fuel cell lacksquare
- ullet
- Design versatile purification system adapted to evolution of hydrogen flow composition lacksquare
- Value electricity at an appropriate tariff for amortizing investment \bullet

Risks on the project:

- flow
- Operation and maintenance costs
- Identify assumptions promoting large scale stationary fuel cell for energy market •

Adapted the integration to high standards of the refinery (sizing, quality of material, etc.)

• An efficiency lower than expected for purification system or a lower availability of hydrogen

Communications Activities

- in overseas territories).
- on the 15th of March 2017.
- SARA presents the project to public during several events.
- The project was included in the presentation of Aquitaine region during "Journées hydrogène dans les territoires" at Cherbourg, 17th and 18th of June 2015.
- A website was edited : www.cleargen.eu

• The project is certified as "territory of hydrogen" by French government (the only one

• The project was presented to the French minister of energy and environment (Segoléne Royal)

EXPLOITATION PLAN/EXPECTED IMPACT

Exploitation

- Monitoring the degradation of stacks performance
- The consortium will published the key parameters \bullet of operation of the fuel cell during and after the project
- The project CEOG : a hybrid power plant (Renewstable[®] power plant) using PV plant, electrolyzer and fuel cell to provide baseload production (HDF);
- ClearGen solution: deliver up to 1 MW clean shore \bullet power to ships (BPSE)

Impact

- Demonstrate more than 30,000 hours of operations for stack (target 40,000 h) which consolidate the business plan
- Demonstrate the viability of 15 years operation of the system (fuel cell and purification)
- Interest from grid operators about fuel cell and hydrogen technologies

CLEARgen Demo

CG Démo

Programme Review Days 2018 Brussels, 14-15 November 2018

FUEL CELLS AND HYDROGEN JOINT UNDERTAKING

Daniela Laursen

Ballard Power Systems Europe A/S

Coordinator: dla@ballardeurope.com

