Mission Innovation
Hydrogen Valley Platform

Virtual Relaunch Event: www.h2v.eu

Brussels, 8 May 2023
Welcome

Mirela Atanasiu

Head of Unit Operations and Communications, Clean Hydrogen Partnership
# H2.0 Valley Platform Relaunch Event

## 1. Welcome and introduction
10:00 – 10:05: Mirela Atanasiu, Head of Unit Operations and Communications, Clean Hydrogen Partnership

## 2. Opening remarks
10:05 – 10:15: Rosalinde van der Vlies, Vice-Chair of the Mission Innovation Steering Committee

## 3. Key highlights of global Hydrogen Valley developments and new features of the Hydrogen Valley Platform 2.0 (incl. Q&A)
10:25 – 10:50: Uwe Weichenhain (Senior Partner) and Markus Kaufmann (Principal), Roland Berger
Laura Marquez, EU Research and Innovation Consultant, Inycom

## 4. Project snapshots and panel discussions: Best practices of Hydrogen Valleys
**Moderators:** Uwe Weichenhain and Markus Kaufmann, Roland Berger
- **10:50 – 11:15:** Session 1 - Building and managing Hydrogen Valleys
- **11:15 – 11:40:** Session 2 - Project development and funding of Hydrogen Valleys
- **11:40 – 11:50:** Q&A

## 5. Closing remarks
11:50 – 12:00: Matthijs Soede, Director, Mission Innovation Clean Hydrogen Mission

---

Ask your questions on slido.com using #H2ValleyPlatform
H2.0 Valley Platform Relaunch Event

1. Welcome and introduction
   10:00 – 10:05: Mirela Atanasiu, Head of Unit Operations and Communications, Clean Hydrogen Partnership

2. Opening remarks
   10:05 – 10:15: Rosalinde van der Vlies, Vice-Chair of the Mission Innovation Steering Committee

3. Key highlights of global Hydrogen Valley developments and new features of the Hydrogen Valley Platform 2.0 (incl. Q&A)
   10:25 – 10:50: Uwe Weichenhain (Senior Partner) and Markus Kaufmann (Principal), Roland Berger
                Laura Marquez, EU Research and Innovation Consultant, Inycom

4. Project snapshots and panel discussions: Best practices of Hydrogen Valleys
   Moderators: Uwe Weichenhain and Markus Kaufmann, Roland Berger
   10:50 – 11:15: Session 1 - Building and managing Hydrogen Valleys
   11:15 – 11:40: Session 2 - Project development and funding of Hydrogen Valleys
   11:40 – 11:50: Q&A

5. Closing remarks
   11:50 – 12:00: Matthijs Soede, Director, Mission Innovation Clean Hydrogen Mission

Ask your questions on slido.com using #H2ValleyPlatform
Opening remarks

Rosalinde van der Vlies

Vice-Chair of the Mission Innovation Steering Committee
Opening remarks

Kurt-Christoph von Knobelsdorff

CEO, NOW GmbH and
German Senior Representative for the
MI Clean Hydrogen Mission

Brussels, 8 May 2023 | www.h2v.eu
H2.0 Valley Platform Relaunch Event

1. Welcome and introduction
   10:00 – 10:05: Mirela Atanasiu, Head of Unit Operations and Communications, Clean Hydrogen Partnership

2. Opening remarks
   10:05 – 10:15: Rosalinde van der Vlies, Vice-Chair of the Mission Innovation Steering Committee

3. Key highlights of global Hydrogen Valley developments and new features of the Hydrogen Valley Platform 2.0 (incl. Q&A)
   10:25 – 10:50: Uwe Weichenhain (Senior Partner) and Markus Kaufmann (Principal), Roland Berger
   Laura Marquez, EU Research and Innovation Consultant, Inycom

4. Project snapshots and panel discussions: Best practices of Hydrogen Valleys
   Moderators: Uwe Weichenhain and Markus Kaufmann, Roland Berger
   10:50 – 11:15: Session 1 - Building and managing Hydrogen Valleys
   11:15 – 11:40: Session 2 - Project development and funding of Hydrogen Valleys
   11:40 – 11:50: Q&A

5. Closing remarks
   11:50 – 12:00: Matthijs Soede, Director, Mission Innovation Clean Hydrogen Mission

Brussels, 8 May 2023 | www.h2v.eu

Ask your questions on slido.com using #H2ValleyPlatform
Key highlights of the global Hydrogen Valleys development and new features of the Hydrogen Valley Platform 2.0 (incl. Q&A)

Uwe Weichenhain
Senior Partner, Roland Berger
Global Hydrogen Lead

Markus Kaufmann
Principal, Roland Berger
Global Hydrogen Team
"Hydrogen Valleys" are local market makers for clean hydrogen – Integrated infrastructure projects along the full value chain

Hydrogen Valleys …
- Next-generation H2 market development
- Integrated (and larger-scale) projects covering more and more of the value chain – "mini hydrogen economies"

… and what they’re made of
- **Large-scale joint investment** (> EUR 10 m and up to multi-bn EUR)
- **Full hydrogen value chain coverage**
  - Centralized clean hydrogen production (*de facto* mostly green H2)
  - Shared infrastructure (e.g., pipelines, refueling stations)
  - Multiple end-uses (e.g., steel industry, fuel cell trucks)
- **Clear regional scope** (e.g., around a major port)
Hydrogen Valleys are truly going global – As of today, we have identified more than 80 Hydrogen Valleys under development around the world.

Note: Only considering Hydrogen Valleys participating in the Mission Innovation Hydrogen Valley Platform
Hydrogen Valleys focus on green H\textsubscript{2} for various end-uses in mobility, industry, and energy sectors

**Upstream**

~ 8.5 mt annual green hydrogen production volume\(^1\)

**Electrolyzer technologies**

- PEM: 70%
- Alkaline: 50%
- Other: 3%

**Midstream**

**Storage** (mainly compr. gas. H\textsubscript{2})

- Cylinder: 82%
- Cavern: 22%
- Other: 9%

**Transportation**

- Pipeline: 60%
- Truck: 67%
- Ship: 32%

**Downstream**

**Industrial off-takers** (esp. chemical industry, refineries and steel)

- 60%

**Mobility end uses** (mainly buses, trucks and cars)

- 80%

**Energy end uses** (esp. grid injection and gas-fired power plants)

- 53%

---

1) After reaching maximum build-out stage
With **EUR 90+ bn planned investment**, Hydrogen Valleys are on a **path to competitiveness** with fossil H₂.

### Investment

<table>
<thead>
<tr>
<th>Scale</th>
<th>Investment (in EUR m)</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small-scale (&lt;100)</td>
<td>Total</td>
<td>42%</td>
</tr>
<tr>
<td>Mid-scale (101-1,000)</td>
<td></td>
<td>28%</td>
</tr>
<tr>
<td>Large-scale (&gt;1,000)</td>
<td></td>
<td>30%</td>
</tr>
</tbody>
</table>

### Hydrogen cost

<table>
<thead>
<tr>
<th>Cost (EUR/kg)</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt; 4</td>
<td>28%</td>
</tr>
<tr>
<td>4-8</td>
<td>48%</td>
</tr>
<tr>
<td>&gt; 8</td>
<td>25%</td>
</tr>
</tbody>
</table>

### Competitiveness

- **Less competitive**: 57%
- **At par or more competitive**: 43%

Compared to conventional offering, as per developers' own assessment.
Hydrogen Valleys are still "early stage" – About 3/4 of projects under development are yet to reach a final investment decision.
Hydrogen Valley developers face common challenges, especially concerning funding and regulation.

Top overall challenges when developing Hydrogen Valleys:

1. Project funding: 73%
2. Permitting and authorization: 70%
3. Technology readiness: 65%
4. Project's business case: 57%
5. Regulatory provisions: 49%

Top overall success factors when developing Hydrogen Valleys:

1. Business model development: 76%
2. Securing funding: 67%
3. Political backing and buy-in: 57%
4. Project's business case: 55%
5. Partnership development: 50%

1) Top 5 answers from survey; multiple answers possible.
Time for your questions, comments and feedback

Join at Slido.com

#H2ValleyPlatform
And now, let's take a look …

Mission Innovation Hydrogen Valley Platform
Showcasing hydrogen flagship projects around the world: A platform for project developers

LEARN MORE  Platform Relaunch May 8th - Register Here  Join The Hydrogen Valleys Community

81 Hydrogen Valleys  31 Countries  89,611 Total investment (M€)
Statistics
This section is based on the most comprehensive survey that has ever been conducted on Hydrogen Valleys globally. More than 2,500 data points collected from more than 30 Hydrogen Valleys offer an exclusive look inside the projects and provide you with details on the Valleys’ fundamentals, technologies deployed, project development, financing aspects as well as overarching project goals and benefits.

Barriers
Also based on the Hydrogen Valley Survey, this section explores the barriers that the Hydrogen Valleys indicated. Both during the preparation and the financing phase, the projects provide an exclusive look into their specific challenges and hurdles they faced or are facing to this day. On top of that, there is a look at the most important regulations for successful projects according to the Hydrogen Valleys.

Best Practices
The Best Practice section offers insights into various topics commonly identified as main hurdles and barriers for hydrogen valleys, ranging from how to successfully obtain both private and public funding, how to secure off-take commitments, manage technological risk, cooperate with project stakeholders and much more. The Best practices are based on comprehensive interviews with outstanding Hydrogen Valleys that have been managing selected challenges particularly well.

Reports
The final report regarding the Hydrogen Valley Platform can be found here.
Best practices

In this section, our most advanced Hydrogen Valleys give in-depth insights into their project's previous development and current status. Learn more about the most commonly faced hurdles and the best practices and lessons learned on how to overcome them.

COMMERCIAL DE-RISKING
- ACES
- CED
- HEVENN

TECHNOLOGICAL DE-RISKING
- H2E
- HEVENN

COALITION BUILDING/PROJECT GOVERNANCE
- Groni Region Hydrogen
- North Atlantic Hydrogen Valley
- N2H2

STAKEHOLDER MANAGEMENT/PUBLIC SUPPORT
- ACES
- ZEV
- iForm

INDUSTRIAL POLICY IMPACT
- SynHyCal

PRIVATE FUNDING
- CED
- HyFutures for Future

PUBLIC FUNDING
- Hydrogen Valley South Tyrol
- HEVENN
- NZGH

Private funding

What challenges did you face during the processes of obtaining private funding?
CED: A general challenge in privately financed projects such as this one is always the financial negotiations with equity and debt partners – especially for new technology projects that aim to be 100% privately funded.
HyFutures for Future: At the lead entity on the HyFutures for Future project, ENI runs the entire economic analysis to invest in different innovation on the Hydrogen Valley and along the hydrogen value chain. This requires a continuous high degree of communication and coordination with all involved stakeholders and project partners (around 50 in total), especially in the run-up of funding applications and funding approvals. The next element on the next “value-added step” of the HyFutures for Future project is the combination of different value chain elements into a project entity (e.g. green hydrogen production, refueling stations, fleets of urban buses, FCEVs, etc.) – we do it for every German Hydrogen Valleys co-funded by the Federal Government and German State Governments (Hamburg, HyLining). Typically, each stakeholder individually is quite certain about his own project – the essential challenge is to bring all of them together to bring complexity, scale, and commercial model for the next level (for example combining the volumes of Hydrogen consumption of multiple mobility operators).

What specific measures did you take to overcome these challenges?
CED: We brought an infrastructure function very early in our overall project timeline; it is especially focused and experienced in energy investment projects. They contributed not only capital, but also project development know-how. We believe that having a strong equity partner on board at the stage during which capital-intensive development costs need to be funded is vital for projects that cannot or do not want to rely on public funding in the development phase.
HyFutures for Future: In a matched, we considered two things important: Building a large-enough, high-quality partnership and focusing on a business case where hydrogen is closest to competitiveness, i.e. mobility. In the early phase of our project, we connected a large number local and regional players that would become potentially valuable long-term partners – and their collaboration could consist of short-term visible business cases in hydrogen mobility. As a result, we were able to meet our self-set targets of a strong partnership (meeting our minimum requirements for quantity and quality). Furthermore, we ensured our collaborations included a coverage of the whole mobility value chain, keeping in mind that investments into one part of the hydrogen sector will always depend on the development of the other parts, e.g. investments into FCVs requiring simultaneous investments into hydrogen production, distribution and refueling stations.

What learning can other projects take away from your experience?
CED: The key advice we can give from our experience: private funding institutions are usually not interested in small projects. Thus, don’t waste time and money on starting a demonstration project on a small scale with a broad range of applications, but rather focus your project on one specific hydrogen application and scale it up to become interesting for private investors. In the end, it is not about the technology, but about what the funding institution thinks of and expects from your project.
HyFutures for Future: The key learning for emerging Hydrogen Valleys is to build a growing network around the value chain very early on and to keep investing into the collaboration of stakeholders. Additionally, we believe that a high degree of “competition” among regional hydrogen players can become counterproductive in an early market phase. Instead, a sense of broad and cooperative thinking should be in focus to help get larger and more integrated projects off the ground. Here, “coordination” itself is a critical asset for a hydrogen valley project. The next step for us now is to connect our Hydrogen Valleys with other regions that are already active in the hydrogen sphere. The overall hydrogen market will not scale up as far as a mere agglomeration of “islands” – for the market, the voice of the Valleys together will be larger than the sum of all projects. Thus, the overarching goal of the Hydrogen Valley concept should be to ultimately provide links between Valleys and ensure a continuous expansion of activities.
All Hydrogen Valley platform members can now sign-up for the members area here: https://membersarea.h2v.eu/
Do you represent a Hydrogen Valley? Join us now!

What defines a Hydrogen Valley?

- Clean hydrogen production
- Larger in scale (double-digit EUR m investment)
- Supply of more than one end use
- Broad value chain coverage
- Geographically defined scope
- Project feasibility

How to join the platform

1. Reach out to H2V@clean-hydrogen.europa.eu with a first introduction of your Hydrogen Valley
2. After initial screening, you are invited to an online survey on your project fundamentals – All information is treated confidential!
3. After submission, your Hydrogen Valley profile is published on the platform – Welcome to the community!
4. You continue to have full control – You can adapt or update your project information at all times

All projects displayed on the platform are welcome to use the MI Hydrogen Valley certificate
What's next for the Hydrogen Valleys platform? Our way forward

Reports and analytics

• Update reports on the state-of-play of the Hydrogen Valleys
• Continuous updates of the data analysis section

Hydrogen Valleys white paper(s)

• Information dossiers on key insights for successful project development
• Directed at different target audiences, e.g., existing Valleys, aspiring new Valleys, policy-makers, etc.

Topical & regional workshops

• Workshops on key hurdles and success factors of Hydrogen Valley project development
• Different target audiences and geographies

H2 Valleys members area

• A network dedicated for Hydrogen Valleys to enhance interaction and collaboration
• Creation of individual profiles, feeds, and events
Have a look at www.h2v.eu and don't hesitate to reach out

Your contacts at the Clean Hydrogen Partnership

Mirela Atanasiu
Head of Unit of Operations and Communications
mirela.atanasiu@clean-hydrogen.europa.eu

Antonio Aguilo Rullan
Project Adviser Operations and Communications
antonio.aguilo-rullan@clean-hydrogen.europa.eu

Kostis Sakellaris
Knowledge Management Officer
kostis.sakellaris@clean-hydrogen.europa.eu

Your contacts at Roland Berger

Uwe Weichenhain
Senior Partner
uwe.weichenhain@rolandberger.com
hydrogenvalleys@rolandberger.com

Markus Kaufmann
Principal
markus.kaufmann@rolandberger.com
hydrogenvalleys@rolandberger.com

Brussels, 8 May 2023 | www.h2v.eu
H2.0 Valley Platform Relaunch Event

1. Welcome and introduction
   10:00 – 10:05: Mirela Atanasiu, Head of Unit Operations and Communications, Clean Hydrogen Partnership

2. Opening remarks
   10:05 – 10:15: Rosalinde van der Vlies, Vice-Chair of the Mission Innovation Steering Committee

3. Key highlights of global Hydrogen Valley developments and new features of the Hydrogen Valley Platform 2.0 (incl. Q&A)
   10:25 – 10:50: Uwe Weichenhain (Senior Partner) and Markus Kaufmann (Principal), Roland Berger
   Laura Marquez, EU Research and Innovation Consultant, Inycom

4. Project snapshots and panel discussions: Best practices of Hydrogen Valleys
   Moderators: Uwe Weichenhain and Markus Kaufmann, Roland Berger
   10:50 – 11:15: Session 1 - Building and managing Hydrogen Valleys
   11:15 – 11:40: Session 2 - Project development and funding of Hydrogen Valleys
   11:40 – 11:50: Q&A

5. Closing remarks
   11:50 – 12:00: Matthijs Soede, Director, Mission Innovation Clean Hydrogen Mission

Brussels, 8 May 2023 | www.h2v.eu
Join at slido.com #H2ValleyPlatform
Moderated panel session 1: Building and managing Hydrogen Valleys

Uwe Weichenhain
Senior Partner, Roland Berger
Global Hydrogen Lead

Grande Region Hydrogen, GER, FRA, LUX

Anamaria Zianveni
Project Manager, Encevo

Clean Hydrogen Coastline, GER

Geert Tjarks
Head of Business Development, EWE

H2 Valley Mid-Norway NOR

Nils Rokke
Executive Vice President Sustainability, Sintef

North Adriatic Hydrogen Valley, SLO/CRO/ITA

Stephen Taylor
Director / Technical Advisor, Area Science Park

Brussels, 8 May 2023 | www.h2v.eu
Grande Region Hydrogen: a crossborder H2 ecosystem

Objective: to promote a hydrogen economy along the entire value chain

11 Members along the value chain

A crossborder H2 pipeline grid enabling investments in H2 production via electrolysis, industrial consumption (e.g. DRI for steel production), mobility services

2027-2030, ramp up to 450 MWe of production capacity

Repurposed & new pipeline: 55 000 t of transported H2/y

Integrated into hydrogen european development plan

3 200 000 t/y of CO2 avoided by 2030

Common objective for projects commissioning in 2027
Project Clean Hydrogen Coastline
Integrated approach for a European hydrogen economy

- Create a hub, that will secure **hydrogen production capacities** for an Intra-European energy market with an electrolyser capacity of up to 400 MW by 2026
- Development of a **trans-european hydrogen infrastructure** for transport via pipelines and storage in salt caverns
- Enable first markets for green hydrogen in industry and in the transport sector
- Total investment in the technology of around **700 Million €** by the end of 2026
- Suitable **funding scheme and regulatory framework** is required (IPCEI status applied)
H2 Valley Mid-Norway
Norway

Nils Rokke
Executive Vice President Sustainability, Sintef
MERÅKER
- 4 trucks operative from 2020
- 1 express boat operative from 2026

TRONDHEIM
- 1 express boat operative from 2028
- 1 service vessel operative from 2023
- 2 container ships under planning
- 8 service vessels under planning

RØRVIK
- 1 service vessel operative from 2023
- 3 bulk carriers under planning
- 4 service vessels under planning

HITRA
- 1 express boat operative from 2026
- 4 service vessels under planning

MERAKER
- 1 express boat operative from 2026
- 4 trucks operative from 2020

HITRA
- 3 bulk carriers under planning
- 4 service vessels under planning

H2 PRODUCTION | H2 STORAGE | H2 DISTRIBUTION
One service vessel and H2 infrastructure for bunkering under construction. Operative from 2023
Investment: €6 million | Production: 0,5 T/day

H2 PRODUCTION | H2 STORAGE | H2 DISTRIBUTION
Funding approved. Full-scale production, storage and distribution for mobility. Operative from 2025
Investment: €30+ million | Production: 8 T/day

H2 PRODUCTION | H2 DISTRIBUTION
Four heavy-duty trucks, warehouse forklifts and fuel station. Operative from 2020
Investment: €9 million | Production: 0,3 T/day

H2 R&D FME HYDROGENi and LAB FACILITY (SINTEF & NTNU)
Research and development Norwegian Fuel Cell and Hydrogen Centre

H2 PRODUCTION | H2 DISTRIBUTION
Joint initiative
Ambitions for operation from 2028
Investment: N/A | Production: N/A

H2 PRODUCTION | INDUSTRIAL
Methanol production. H2 use in methanol process 15-30 t/day. Working on a development plan which might facilitate for large export of blue and/or green H2 or H2 derivatives.
Investment: €x million | Production: 15-30 T/day ++
North Adriatic Hydrogen Valley (NAHV)
the first transnational Hydrogen Valley

• In the beginning there was a bottom-up process led by a visionary industrialist, Aleksander Gerbec
• Letter of Intent – first political declaration of the will to form the first transnational Hydrogen Valley
  • Republic of Croatia/Republic of Slovenia/ Region of Friuli Venezia Giulia, Italy
• Joint Working Group – initial organizational structure defined
  • Institutional partners + representatives of industry and research communities from each of the three territories
• Horizon Europe Call – first funding opportunity identified
  • Large Scale Hydrogen Valley – up to € 25M
• Open calls for manifestations of interest in three territories
  • Over a hundred companies manifested interest
• Rapid but rigorous selection process
  • Assessment of each pilot project proposal for feasibility, readiness and fit
• Construction of partnership and presentation of first project led by Slovenian energy company HSE
  • Consortium constructed to include adequate production/storage/distribution and end use in power, transport and hard to abate sectors
• Ongoing further development of the North Adriatic Hydrogen Valley initiative
  • Extension of activities in the three territories and networking with other hydrogen valleys
• AISBL chosen as future governance model to guarantee success of the transnational model
Moderated panel session 2: Project development and funding of Hydrogen Valleys
Green Hysland
Spain

Carlos Navas
Head of Strategy and Regulatory Affairs,
Enagas
GREEN HYSLAND: Deployment of a Hydrogen Ecosystem in the island of Mallorca

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007201. This Joint Undertaking receives support from the European Union’s Horizon 2020 Research and Innovation programme, Hydrogen Europe and Hydrogen Europe Research.
H2U Hydrogen Valley
Ukraine

Iaroslav Kryl
CEO, Hydrogen Ukraine
H2U Hydrogen Valley in Odesa Region, Ukraine

Electrolyser capacity: 100MW
Solar: 120MW
Wind: 80MW
Period of construction: 24 months

---

**Project name** | H2U Hydrogen Valley
---|---
**Lead developer** | Hydrogen Ukraine LLC
**Location** | Reni, Odesa region, Ukraine
**Description** | Constructing a renewable hydrogen plant aiming for an initial electrolysis capacity of 100 MW, dedicated to producing renewable electricity and green hydrogen for export to EU countries.

**Advantages** | Abundant water resources, optimal PV and wind power configuration H2 production is strategically located near the EU border

**Challenges** | Despite challenges due to the Russian invasion, H2U continues to advance the project and contribute to Ukraine's hydrogen energy strategy
H2B2 will start producing green hydrogen for mobility in our facility SoHyCal, located in CA Central Valley. Production will ramp up from 1.2 Tons per day by end of 2023 to 3.8 Tons per day by end of S1 2024.

SoHyCal will start operations by June 2023 with a limited capacity of 300 kg/day.

SoHyCal is a pioneering project, being the first of its kind to be powered behind the meter, 100% renewable energy powered facility by means of biogas and solar energy.

Hydrogen will be generated and injected into tube trailers for storage and transportation in gas state at up to 520 bars.
Ceará – Green Hydrogen House
Brazil

Corne Hulst
COO, Pecem Industrial & Port Complex
Unique Gh2 potential

- **Abundant potential of low cost Renewable Energy;** High full load hrs.
  - Solar; 28,500 GWp
  - Onshore Wind; 880 GW
  - Offshore Wind; 1,335 GW

- **Production water;** Abundant effluent water vs. desalination

- **High demand;** Export to EU & Local GH2 hub
  - Rotterdam 4 Mil. Ton – 2030 / 20 Mil. Ton 2050
    - Distance to EU & Low transport cost vs. total cost
  - Pecém Industry; Steel, Power Plants, Cement, Fertiliser

- **Stable investment climate;** Government, Education, Labour market, PoR

- **Commercial;** 20+ MOU’s & 3 FEED studies – FID end 2023/begin 2024
H2.0 Valley Platform Relaunch Event

1. Welcome and introduction
   10:00 – 10:05: Mirela Atanasiu, Head of Unit Operations and Communications, Clean Hydrogen Partnership

2. Opening remarks
   10:05 – 10:15: Rosalinde van der Vlies, Vice-Chair of the Mission Innovation Steering Committee

3. Key highlights of global Hydrogen Valley developments and new features of the Hydrogen Valley Platform 2.0 (incl. Q&A)
   10:25 – 10:50: Uwe Weichenhain (Senior Partner) and Markus Kaufmann (Principal), Roland Berger
   Laura Marquez, EU Research and Innovation Consultant, Inycom

4. Project snapshots and panel discussions: Best practices of Hydrogen Valleys
   Moderators: Uwe Weichenhain and Markus Kaufmann, Roland Berger
   10:50 – 11:15: Session 1 - Building and managing Hydrogen Valleys
   11:15 – 11:40: Session 2 - Project development and funding of Hydrogen Valleys
   11:40 – 11:50: Q&A

5. Closing remarks
   11:50 – 12:00: Matthijs Soede, Director, Mission Innovation Clean Hydrogen Mission

Ask your questions on slido.com using #H2ValleyPlatform
Closing remarks

Matthijs Soede
Director, Mission Innovation Clean Hydrogen Mission

Brussels, 8 May 2023 | www.h2v.eu