

IMPACT

Improved Lifetime of Automotive Application Fuel Cells with Ultra-Low Pt-Loading

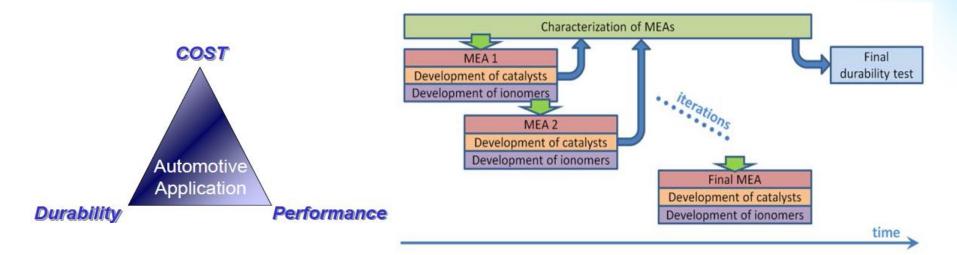
K. A. Friedrich German Aerospace Center (DLR), Pfaffenwaldring 38-40, 70569 Stuttgart, Germany

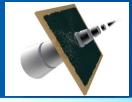
> http://www.eu-project-impact.eu/ andreas.friedrich@dlr.de

Programme Review Days 2017 Brussels, 23-24 November

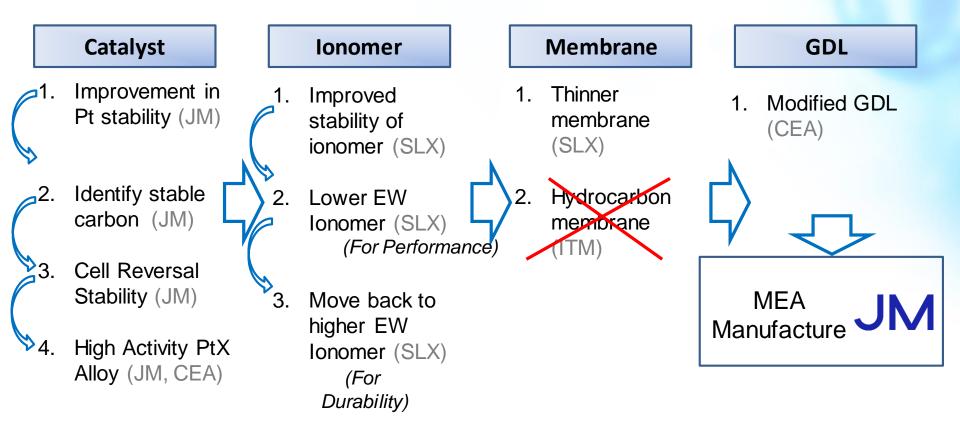
PROJECT OVERVIEW

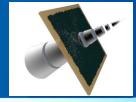
- Call year: 2011
- Call topic: SP1-JTI-FCH.2011.1.6 Investigation of degradation phenomena; SP1-JTI-FCH.2011.1.5 Next generation European MEAs for transport applications
- Project dates: 11/2012 10/2016
- % stage of implementation 01/11/2017: 100 %
- Total project budget: 9,144,435 €
- FCH JU max. contribution: 3,902,403 €
- Other financial contribution: 0 €
- Partners: DLR, CEA, JRC, CNR-ITAE, ITM, JMFC, ZSW, UAES, TUB, INPT, GIST, SLX


PROJECT SUMMARY

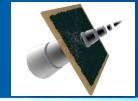

The objectives are to:

- increase life-time of low Pt-loaded MEAs (0.2 mgcm⁻²) for automotive applications to 5,000 h in dynamic operation with degradation rates <10 µVh⁻¹
- to obtain a power density of 1 Wcm⁻² (performance target achieved).

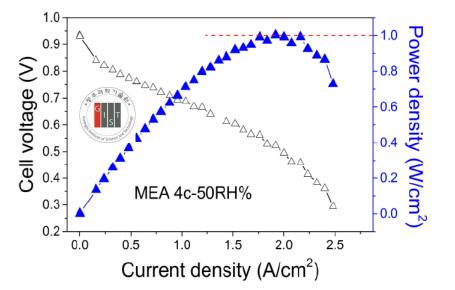

through identification of degradation mechanisms and subsequent material development to mitigate them.


PROJECT SUMMARY - Project MEAs

Work by all project partners feeds into low loaded MEAs for testing



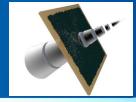
PROJECT SUMMARY - Project MEAs



	Commerci al Reference MEA	Project Reference MEA I	MEAII	MEA III	MEAIV	MEA IVb	MEA IVc	MEA V
Anode Catalyst	JM Catalyst	40% Pt/XC72R	HSA Pt/C	HSA Pt/C	HSA Pt/C	HSA Pt/C	HSA Pt/C	HSA Pt/C
Anode Loading, mg/cm ² _{Pt}	0.05	0.2	0.05	0.05	0.05	0.05	0.05	0.05
Cathode Catalyst	JM Catalyst	40% Pt/XC72R	HSA Pt/C	HSA Pt/C	Stable Pt/C	Stable Pt/C - Optimised	Stable Pt/C - Optimised	Stable Pt/C - Optimised
Cathode Loading, mg/cm ² _{Pt}	0.4	0.2	0.4	0.4	0.2	0.2	0.15	0.2
Ionomer	Non- Solvay	Solvay D79- 20BS	Non-Solvay	Non-Solvay	Solvay D79- 20BS	Solvay D79- 20BS	Solvay D83- 240BS	Solvay D83-240BS
Membrane	Non- Solvay	Solvay, 20 microns	Solvay, 20 microns	Solvay, 10 microns	Solvay, 10 microns	Solvay, 10 microns with stabilising agent	Solvay, 10 microns with stabilising agent	Solvay, 10 microns with stabilising agent
GDL	SGL 25BC Modified – provided by DLR	SGL 25BC Modified – provided by DLR	SGL 25BC Modified – provided by DLR	SGL 25BC Modified – provided by DLR	SGL 25BC Modified – provided by DLR			

PROJECT PROGRESS/ACTIONS - Performance at reduced Pt-loading

to-date % stage of							2mgcm ⁻² .0 Wcm ⁻²
Aspect addresse	sed Parameter (KPI)		Unit	SoA	FCH JU Targets		
Aspectadulesse				2017	Call topic	2017	2020
Performance at		Pt-loading	mgcm ⁻²	0.35*	0.2	0.2	<0.2
reduced Pt-loadir	ng P	ower density	Wcm ⁻²	1*	1	1	>1

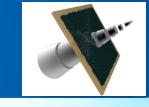


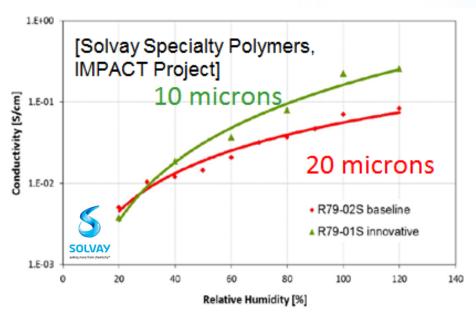
Conditions:

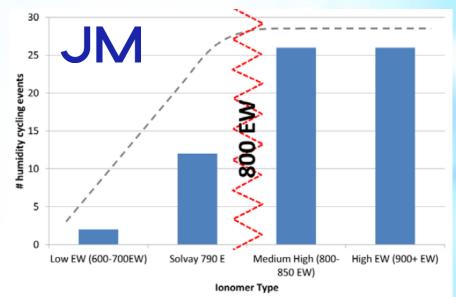
- 80° C cell temperature
- 50%RH
- 1.5 bar absolute pressure
- air stoich. 2.0

*Autostack-Core, Evo2 (2 bar pressure, 2.8 air stoich.)

PROJECT PROGRESS/ACTIONS - Durability at reduced Pt-loading

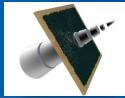


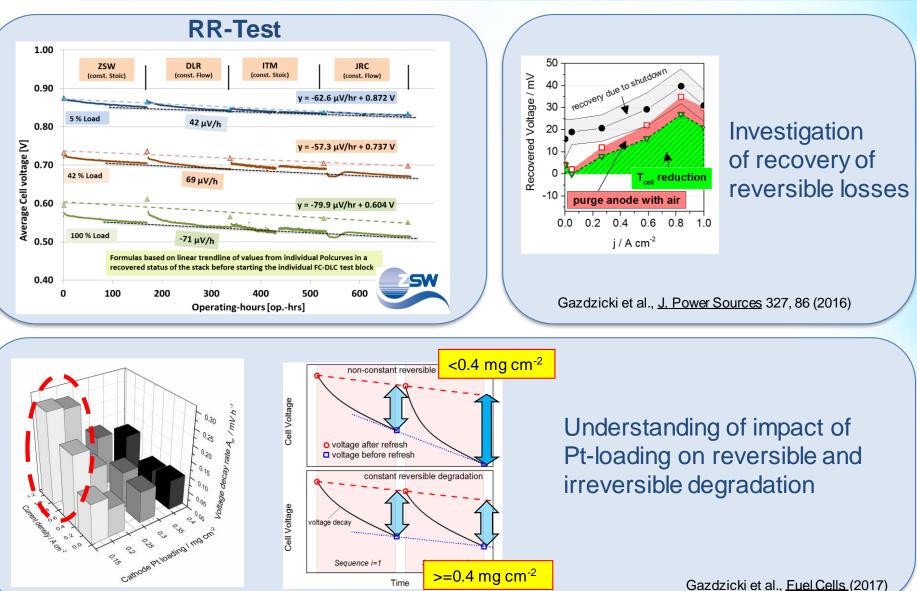



Acrossed	Parameter (KPI)	Unit	SoA	FCH JU Targets		
Aspect addressed			2017	Call topic	2017	2020
Durability at 0.2 mg	Lifetime	h	<5000	5000	5000	6000
cm ⁻² Pt-loading	Degradation rate	μV/h	<20*	10	10	<10

- 1700 h reached in stack durability test (instability/failure of individual cells)
- 10-20 μ V/h achieved in 500 h single cell test

PROJECT PROGRESS/ACTIONS - Material Development

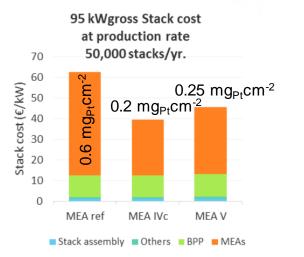

Development of highly conductive membranes with reduced H2 crossover


Consiglio Nazionale delle Ricorche CNR	SAMPLE	Tafel Slope mV/dec	j _m @0.9V _{IRfree} mA∕mg
	40%Pt/C	64	307
	PtCo8T/KB	72	457
	Pt ₁ Ni ₁ /KB	69	357

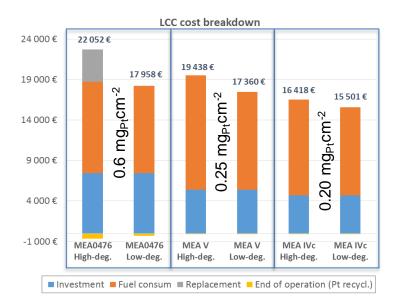
Optimizing ionomer in electrodes

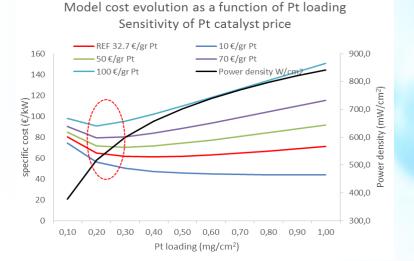
Development of PtCo/KB cats with superior mass activity

PROJECT PROGRESS/ACTIONS - Further Selected Achievements

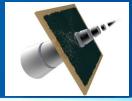


Time


Gazdzicki et al., Fuel Cells (2017)


PROJECT PROGRESS/ACTIONS - Cost Model by CEA

Stack cost breakdown



Sensitivity of cost on Pt price; Power vs loading based on rainbow stack study

LCC for life cycle cost: combination of manufacturing cost and operating expenses including durability effects (low and high degradation rates resulting from different test were used)

SYNERGIES WITH OTHER PROJECTS AND PROGRAMMES

Interactions with projects funded under EU programmes

- IMPALA: provides knowledge about improved GDLs, organization of common workshop
- **Stack-Test:** Test procedures (FC-DLC) developed in Stack-Test are used for the durability testing within IMPACT
- **DECODE:** provides knowledge about degradation processes and mechanisms. Moreover GDLs developed within DECODE are used as standard GDLs in IMPACT
- Autostack-Core: New insight on operating ultra-low Pt loading fuel cells under automotive conditions gained within IMPACT will be used

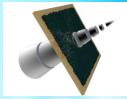
DISSEMINATION ACTIVITIES

Public deliverables

- D6.4 Publication to the comparability of single cell and stack experiments for the investigation of degradation of PEFC
- D9.2 Project fact sheet
- D9.4 & D9.6 Summary reports of second public workshops

Conferences/Workshops

- 2 organised by the project + 1 summer school
- 33 in which the project has participated (but not organised)


Social media

http://www.eu-project-impact.eu/

Publications: 15

- T. Morawietz et al., <u>Quantitative in Situ Analysis of Ionomer Structure in Fuel</u> <u>Cell Catalytic Layers</u>, ACS Appl. Mater. Interfaces, 2016, 8, 27044-27054
- R. Hiesgen et al., <u>Insight into the Structure and Nanoscale Conductivity of</u> <u>Fluorinated Ionomer Membranes</u>, J. Electrochem. Soc. 2014, 161, F1214-F1223

Patents: 0

Thank You!

Coordinator: andreas.friedrich@dlr.de