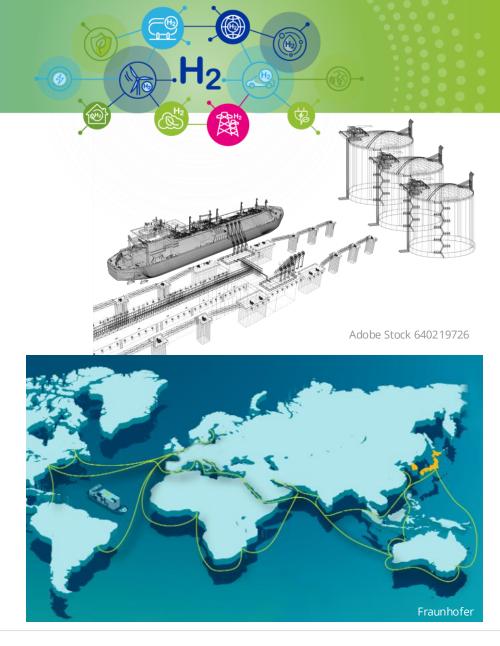


ENERGY TRANSPORTATION AND STORAGE WITH LIQUID HYDROGEN

Dr.-Ing. Robert Eberwein

Storage Forms of Hydrogen



Enable Economical Energy Imports by LH₂

- Bulk transportation and bulk storage enable the implementation of a flexible, large-scale energy market, and tanks can be built where they are needed.
- First studies indicate LH₂ could be more cost-effective and lower risk than H₂ derivatives for energy import
- First national plans for LH₂ terminals and transfer lines routes
- Acceptance and confidence are increasing thanks to LNG infrastructure
- Infrastructure could be adapted for LH₂

H₂

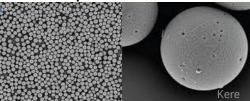
State of the Art: Tank Design and Insulation

Small-scale tank

Double wall

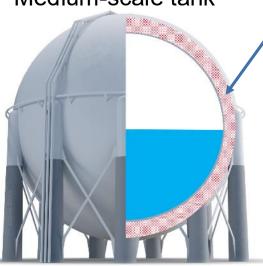
+

Vacuum


Fill material

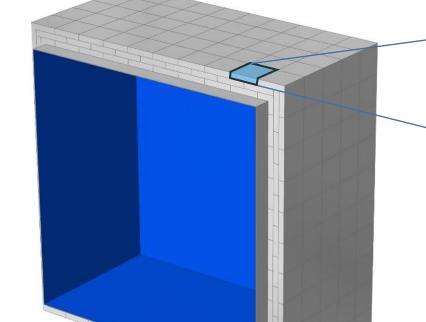
MLI

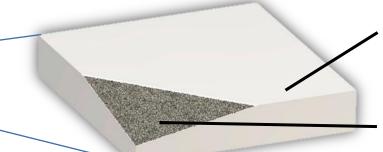
Cosmos Indirekt


Microspheres

Perlites

Medium-scale tank


Technology proven in small and medium-scale



- Low volume compared to prismatic shapes
- Long production time due to process chain (>3 years)
- Low quality assurance possibilities
- Low fault tolerance

Tank Insulated by Vacuum Insulation Panels (VIP)

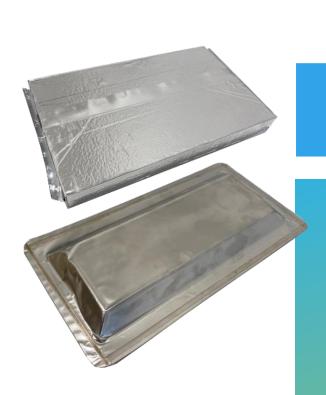
Highly porous core material

- Scalable
- Low production time due to standardized and partial insulations
- Cost- and energy-efficient
- Very good quality assurance and safety

Not approved or tested

KLASSISCH

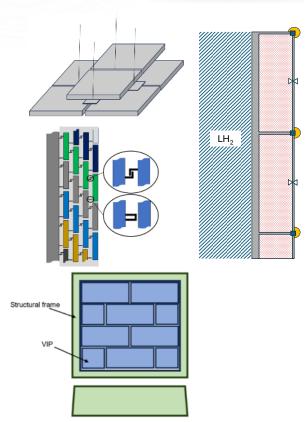
STÄRKE 1 2 3 4 5


CHARANTERSTARE UND BUSO

Gas-tight outer membrane

VIPs as a Concept, at the Heart of the Novel Approach

Envelope

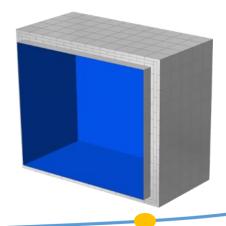

core material with vacuum

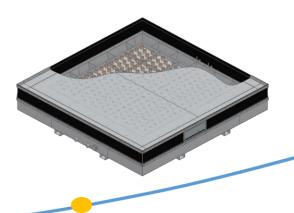
+ dimensions, mounting

VIPs are established in the packaging and infrastructure industry, but not for cryogenics

Knowledge gaps:

- Resistance and behaviour to temperature changes and cryogenic conditions
- Manufacturing and costs
- Placement and mounting
- •





Progress

Preparing Implementation

- Methods to evaluate concepts
- Promising and non-promising concepts from the past
- Specification

Concept

Demonstrator

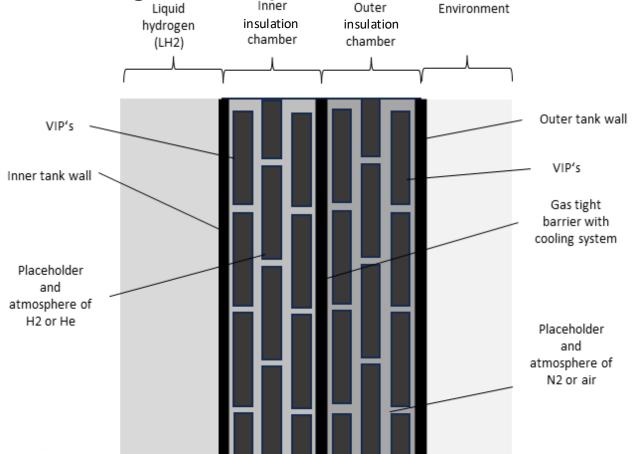
- Developing promising concepts
- Benchmark by KPIs from SRIA and others, taking into account

Insulation design

Circularity and sustainability

Safety

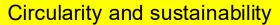
Proof of Concept + Material Tests

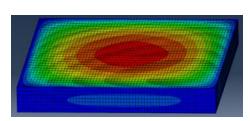

- Promising novel insulation concepts for large-scale LH₂ tanks
- Design guidelines
- RCS recommendation

Promising Concept as an Interim Result

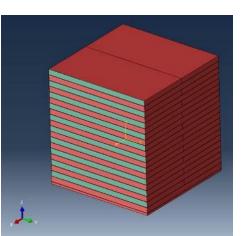
Key Features:

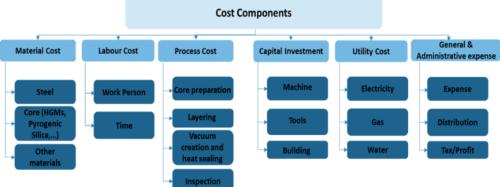
- Non-vacuum-tight tank construction
- Insulation can be parallelized, premanufactured
- Cooling elements can be integrated

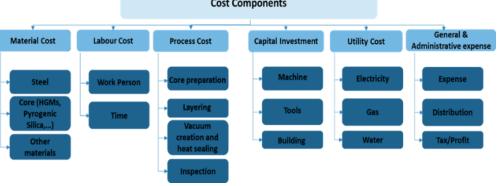

CONCEPT		REFERENCE	1	2	3	4	
SCHEMATIC DESIGN		merepeurous buds (1)	The book fill	Total Ha	Total No.	Total No. 20 No.	
INNER	INSULATION MATERIAL	EVACUATED PERLITE / GLASS MICROSPHERES	EVACUATED PERLITE / GLASS MICROSPHERES	EVACUATED PERLITE / GLASS MICROSPHERES	VIPs	VIPs IN MODULAR STRUCTURES	
LAYER	SWEEPING GAS / VACUUM	VACUUM	VACUUM	He	He	He	
OUTER LAYER	INSULATION MATERIAL	-	VIPs	VIPs	VIPs	VIPs IN MODULAR STRUCTURES	
	SWEEPING GAS / VACUUM	-	N2	N2	N2	N2	



Impressions from Benchmark Supporting Activities


Safety





Insulation design

Caroty			More frequent			
ID	SCENARIO DESCRIPTION / CAUSE	Frequency class				
		Α	В	C	D	Е
B13	Windborne debris or object impact	0%	36%	29%	29%	7%
B32	Mechanical failure within the gap (e.g. vibration and failure of the panels support structure)	0%	7%	79%	14%	0%
C31	No flow: failure of sweeping gas control loop	0%	13%	80%	7%	0%
C32	Block in sweeping gas supply system	0%	20%	67%	13%	0%
C21	Pressurization of gap: Failure of sweeping gas control loop	0%	29%	57%	14%	0%
D41	Vacuum level degradation in panels	8%	25%	42%	25%	0%
B14	Dopped object (e.g. crane during maintenance work on site)	0%	36%	45%	18%	0%
C41	Vacuum in gap: Failure of sweeping gas control loop	0%	27%	67%	7%	0%

Specimen 4_1



Impact and KPI

KPI	Clean Hydrogen JU SRIA KPIs								
	SRIA reference	Unit	SoA (2020)	Target 2024	Targets 2030				
11	Onshore LH2 containment tank capex	[€/kg]	100	70	<20				
12	LH2 boil-off	[%/d]	< 0.3	0.1	<0.1				

Thanks for your attention

NICOLHy project No. 101137629 is funded by the European Union.

Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or Clean Hydrogen JU. Neither the European Union nor the granting authority can be held responsible for them.