

Next Generation Alkaline Membrane Water Electrolysers with Improved Components and Materials

Contents

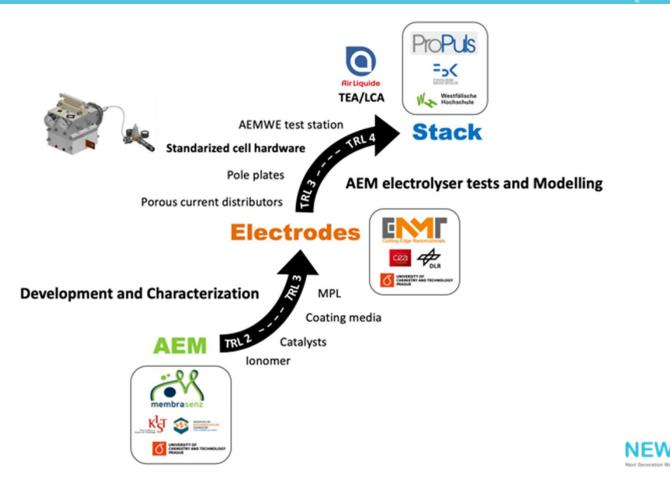
- Short summary about NEWELY
- Objectives of the project
- Partners and their roles
- Concept of NEWELY
- Preliminary results
- Video

Short summary about NEWELY

- Starting date: 1st January 2020
- Duration: 36 months
- Budget: 2,597,414 €
- FCH-JU contribution: 2,204,846 €
- Call topic: FCH-02-4-2019 New Anion Exchange Membrane Electrolysers

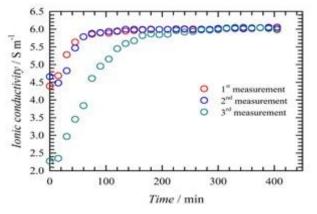
Objectives

- NEWELY project aims to redefine AEMWE, surpassing the current state of AWE and bringing it one step closer to PEMWE in terms of efficiency but at lower cost. The main developments include:
 - Stable AEMs and ionomers with ionic conductivity of at least 50 mS cm⁻¹ in pure water
 - Highly active on-PGM nanostructured oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) catalysts
 - MEAs based with pore-gradient catalytic layers with open structure
 - Thermal sprayed pore-graded macroporous layers (MPL) on low-cost mesh-type stainless steel PTLs, to decreae cell overpotential
 - 200 cm² active area AEMWE 5-cell stack with hydraulic compression technology and output hydrogen pressure up to 40 bar.
- The stack will reach 2 V @ 1 A cm⁻² with pure water feedstock only. The targeted performance of the NEWELY prototype will be validated in a 2,000 hours endurance test with < 50 mV degradation.


Partners and their roles in the project

Participant	Participant organisation name	Country	Role
	Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)	Germany	Coordinator, PTL, MEA
Westfälische Hochschule	Westfälische Hochschule Gelsenkirchen, Bocholt, Recklinghausen (WHS)	Germany	Stack testing, stack development
cea	Commissariat à l'énergie atomique et aux énergies alternatives (CEA)	France	MEA, testing
ProPuls	ProPuls GmbH (ProPuls)	Germany	Stack, test cell
٩	Air Liquide (Air Liquide)	France	TEA, LCA
ERURG VESSER	Fondazione Bruno Kessler (FBK)	Italy	Testing, communication, dissemination and exploitation
EMF	Cutting-Edge Nanomaterials UG (CENmat)	Germany	Catalysts
Cells	MEMBRASENZ GmbH Sàrl (Membrasenz)	Switzerland	Membrane
Consistent of Consistent of the second	Vysoká škola chemicko-technologická (UCTP)	Czech republic	Membrane testing, analytics
RESTRUCT OF	Ústav makromolekulární chemie AV ČR v.v.i. (IMC-CAS)	Czech republic	lonomer, membrane
KlgT	Korea Institute of Science and Technology (KIST)	South Korea	Membrane

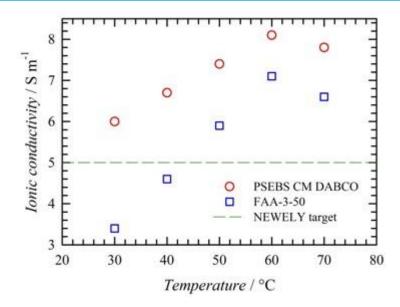
Concept of NEWELY

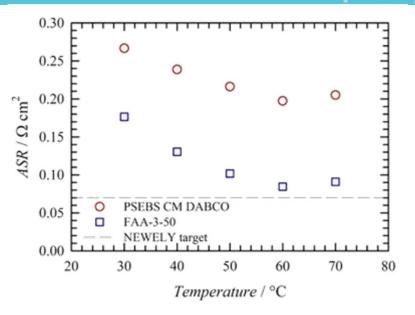


Membrane and binder Type 1 - based on hydrocarbon backbone with DABCO functional group

- High OH⁻ conductivity,
- good mechanical stability (60 μm thickness)
- Stability of functional group in KOH
- Developed active binder based on same chemistry

EIS frequency range 30 kHz – 10 Hz, max. amplitude 20 mV

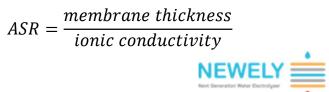



PSEBS-CM-DBC membrane properties

Fully hydroxide form, demineralised water, 30 °C

Membrane parameter	PSEBS CM DABCO	NEWELY target	Comment on the next optimisation steps
Tensile stress at break, MPa	3.4	15	Crosslinking; Reinforcement textile
Tensile strain at break, %	436	100	Target was met
IC, S m ⁻¹	6.0ª	5.0ª	Target was met
ASR, Ω cm ²	0.27	0.07	Increased degree of chloromethylation; Thickness reduction

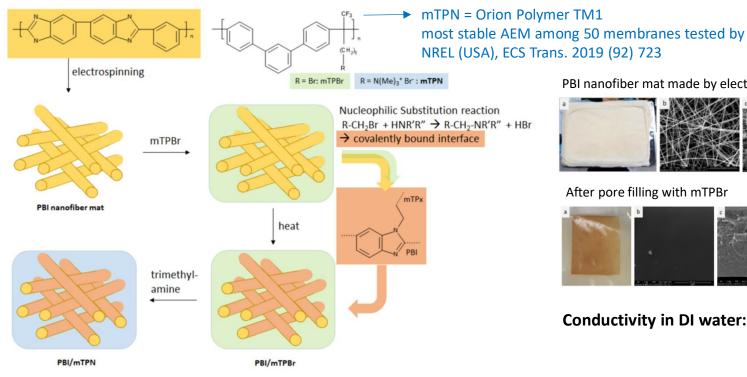
Membrane and binder Type 1 – transport properties

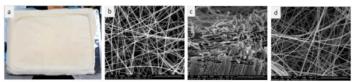


Ionic conductivity (IC):

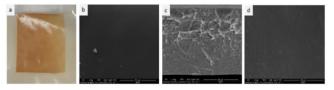
- fully hydroxide form, demineralised water, 30 °C
- 4-electrode arrangement
- electrochemical impedance spectroscopy
- applied constant voltage 2 V
- in-plane conductivity

Area specific resistance (ASR):

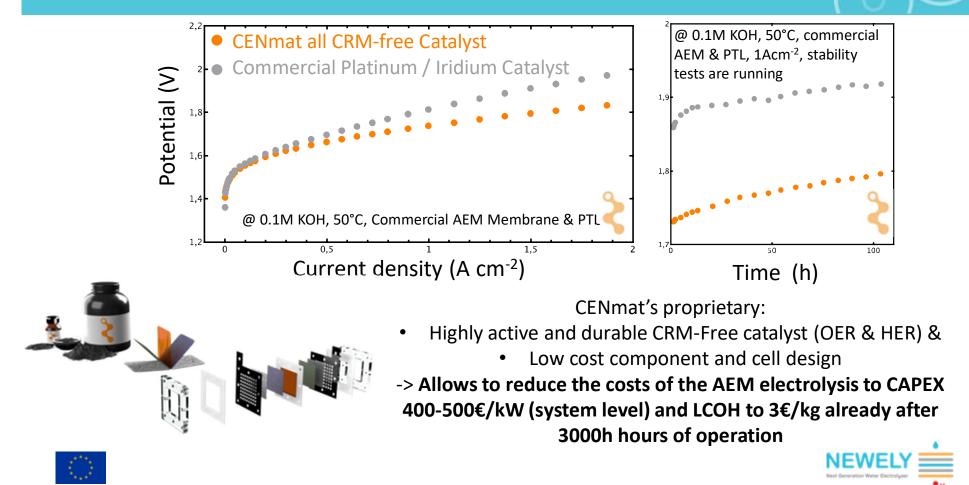

- calculated from measured ionic conductivity



Membrane and binder Type 2 – based on Orion Polymer TM1

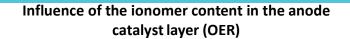

Common strategy to control swelling: membranes reinforced by porous support **Problem:** Different swelling of support and ion conductive matrix can lead to voids along the support Solution: Enhanced interface by covalent bonds between support and ion conductive matrix

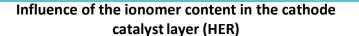
PBI nanofiber mat made by electrospinning

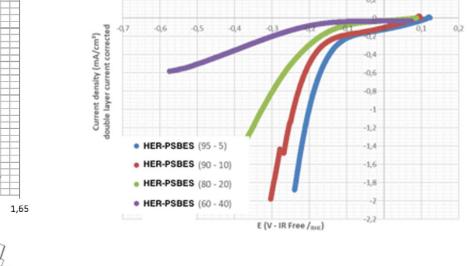

After pore filling with mTPBr

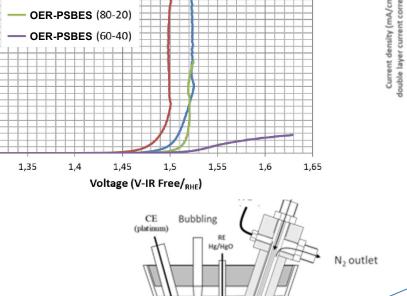
Conductivity in DI water: 62 mS/cm

Patent application (KIST): KR2020-0070694, EU 21152812.0; Paper submitted (KIST, UCTP, DLR)

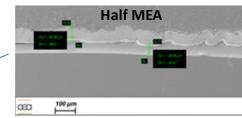

Catalysts - CENmat




Catalysts - CEA


OER-PSBES (95-5)

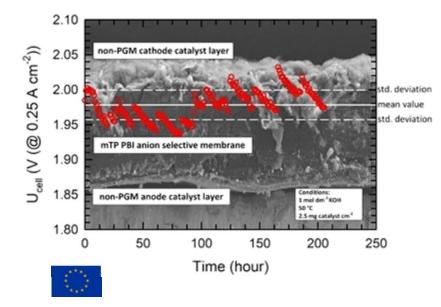
OER-PSBES (90-10)



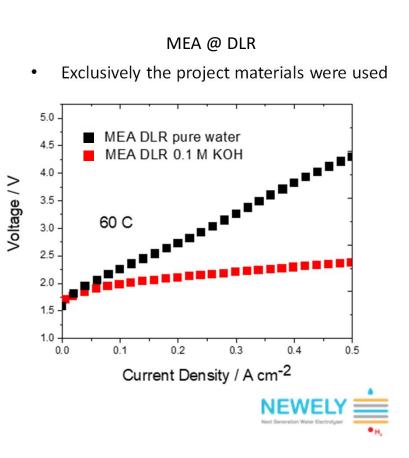
SAMPLE

1,2

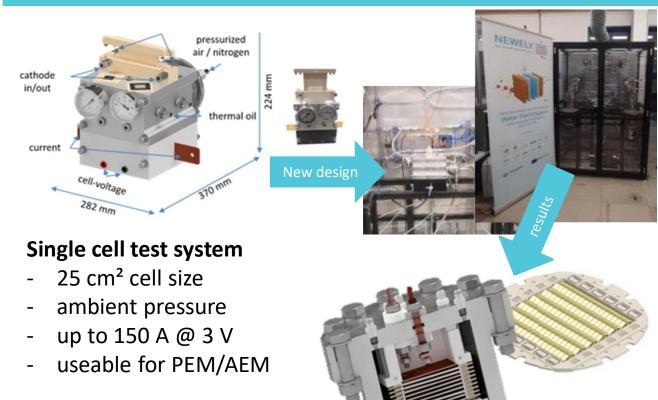
1


0


1,3


CCM & MEA – UCPT + DLR

MEA @ UCPT


- Exclusively the project materials were used
- Average cell voltage of (1.98 ± 0.02) V at 0.25 A cm⁻² over 200 hours experiment

Stack concept and test station

Test station for AEMWE

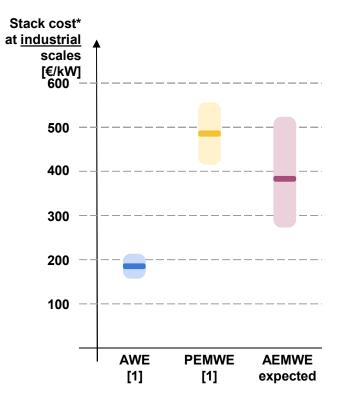
- 25 cm² / 200 cm²
- resin water / KOH
- option for NEWELY Stack

New AEMWE stack

- 5 cells
- 200 cm²
- 1 A/cm² @ 2 V
- Up to 2 kW
- 40 bar

TEA of AEMWE

A **Techno-Economic Analysis (TEA)** will be performed


- proving the competitiveness of AEMWE compared to AWE and PEMWE
- indicating the development focus for future research

AEMWE target cost at short-term: intermediate

between AWE and PEMWE. The current **costs** (R&D level) are expected to **reduce importantly** once the production reaches **industrial scales**.


[1] Gigawatt green hydrogen plant, state-of-the-art design and total installed capital costs, Hydrohub Innovation Program, 2020

Video for general public on AEMWE

Video can be watched here: www.newely.eu

Thank you for your attention!

Contact: Dr. Aldo S. Gago German Aerospace Center (DLR) Institute of Engineering Thermodynamics <u>aldo.gago@dlr.de</u>

